Suppr超能文献

根据潜在疾病和年龄估计与 COVID-19 大流行相关的超额 1 年死亡率:一项基于人群的队列研究。

Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study.

机构信息

Institute of Health Informatics, University College London, London, UK; University College London Hospitals NHS Trust, London, UK; Barts Health NHS Trust, The Royal London Hospital, London, UK.

Institute of Health Informatics, University College London, London, UK.

出版信息

Lancet. 2020 May 30;395(10238):1715-1725. doi: 10.1016/S0140-6736(20)30854-0. Epub 2020 May 12.

Abstract

BACKGROUND

The medical, societal, and economic impact of the coronavirus disease 2019 (COVID-19) pandemic has unknown effects on overall population mortality. Previous models of population mortality are based on death over days among infected people, nearly all of whom thus far have underlying conditions. Models have not incorporated information on high-risk conditions or their longer-term baseline (pre-COVID-19) mortality. We estimated the excess number of deaths over 1 year under different COVID-19 incidence scenarios based on varying levels of transmission suppression and differing mortality impacts based on different relative risks for the disease.

METHODS

In this population-based cohort study, we used linked primary and secondary care electronic health records from England (Health Data Research UK-CALIBER). We report prevalence of underlying conditions defined by Public Health England guidelines (from March 16, 2020) in individuals aged 30 years or older registered with a practice between 1997 and 2017, using validated, openly available phenotypes for each condition. We estimated 1-year mortality in each condition, developing simple models (and a tool for calculation) of excess COVID-19-related deaths, assuming relative impact (as relative risks [RRs]) of the COVID-19 pandemic (compared with background mortality) of 1·5, 2·0, and 3·0 at differing infection rate scenarios, including full suppression (0·001%), partial suppression (1%), mitigation (10%), and do nothing (80%). We also developed an online, public, prototype risk calculator for excess death estimation.

FINDINGS

We included 3 862 012 individuals (1 957 935 [50·7%] women and 1 904 077 [49·3%] men). We estimated that more than 20% of the study population are in the high-risk category, of whom 13·7% were older than 70 years and 6·3% were aged 70 years or younger with at least one underlying condition. 1-year mortality in the high-risk population was estimated to be 4·46% (95% CI 4·41-4·51). Age and underlying conditions combined to influence background risk, varying markedly across conditions. In a full suppression scenario in the UK population, we estimated that there would be two excess deaths (vs baseline deaths) with an RR of 1·5, four with an RR of 2·0, and seven with an RR of 3·0. In a mitigation scenario, we estimated 18 374 excess deaths with an RR of 1·5, 36 749 with an RR of 2·0, and 73 498 with an RR of 3·0. In a do nothing scenario, we estimated 146 996 excess deaths with an RR of 1·5, 293 991 with an RR of 2·0, and 587 982 with an RR of 3·0.

INTERPRETATION

We provide policy makers, researchers, and the public a simple model and an online tool for understanding excess mortality over 1 year from the COVID-19 pandemic, based on age, sex, and underlying condition-specific estimates. These results signal the need for sustained stringent suppression measures as well as sustained efforts to target those at highest risk because of underlying conditions with a range of preventive interventions. Countries should assess the overall (direct and indirect) effects of the pandemic on excess mortality.

FUNDING

National Institute for Health Research University College London Hospitals Biomedical Research Centre, Health Data Research UK.

摘要

背景

2019 年冠状病毒病(COVID-19)大流行对总体人口死亡率的医学、社会和经济影响尚不清楚。以前的人口死亡率模型是基于受感染者在数天内的死亡情况,而这些感染者几乎都有潜在的疾病。这些模型没有纳入有关高危疾病的信息,也没有纳入其长期的基线(COVID-19 之前)死亡率。我们根据不同的传播抑制水平和不同的疾病相对风险对死亡率的影响,估计了在不同 COVID-19 发病率情况下超过 1 年的超额死亡人数。

方法

在这项基于人群的队列研究中,我们使用了来自英格兰的健康数据研究英国-加利伯尔(Health Data Research UK-CALIBER)的链接初级和二级护理电子健康记录。我们根据英格兰公共卫生署(Public Health England)的指南(自 2020 年 3 月 16 日起),在 1997 年至 2017 年期间注册的 30 岁或以上的个体中,报告潜在疾病的患病率,使用每种疾病的经过验证的、公开可用的表型。我们估计了每种疾病的 1 年死亡率,开发了一个简单的模型(和一个计算工具),假设 COVID-19 大流行(与背景死亡率相比)的相对影响(作为相对风险[RR])为 1.5、2.0 和 3.0,在不同的感染率情况下,包括完全抑制(0.001%)、部分抑制(1%)、缓解(10%)和不作为(80%)。我们还开发了一个在线的、公共的、原型风险计算器,用于估计超额死亡人数。

结果

我们纳入了 3862012 名个体(1957935 名女性[50.7%]和 1904077 名男性[49.3%])。我们估计,超过 20%的研究人群处于高危类别,其中 13.7%的人年龄大于 70 岁,6.3%的人年龄在 70 岁或以下,且至少有一种潜在疾病。高危人群的 1 年死亡率估计为 4.46%(95%CI 4.41-4.51)。年龄和潜在疾病共同影响背景风险,在不同的疾病中差异显著。在英国人口中完全抑制的情况下,我们估计与基线死亡相比,RR 为 1.5 时会有两个超额死亡,RR 为 2.0 时会有四个,RR 为 3.0 时会有七个。在缓解的情况下,我们估计 RR 为 1.5 时会有 18374 例超额死亡,RR 为 2.0 时会有 36749 例,RR 为 3.0 时会有 73498 例。在不作为的情况下,我们估计 RR 为 1.5 时会有 146996 例超额死亡,RR 为 2.0 时会有 293991 例,RR 为 3.0 时会有 587982 例。

解释

我们为决策者、研究人员和公众提供了一个简单的模型和一个在线工具,用于根据年龄、性别和潜在疾病的具体估计,了解 COVID-19 大流行超过 1 年的超额死亡率。这些结果表明,需要持续采取严格的抑制措施,并持续努力针对那些因潜在疾病而处于高危的人群,实施一系列预防干预措施。各国应评估大流行对超额死亡率的直接和间接影响。

资金

英国国家卫生研究院大学学院伦敦医院生物医学研究中心,健康数据研究英国。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d185/7306160/b0c43e6ea522/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验