Suppr超能文献

游离手、患者特异性器械或手术导航在肿瘤切除后同种异体骨重建中效果更好吗?一项临床前合成骨研究。

Does Freehand, Patient-specific Instrumentation or Surgical Navigation Perform Better for Allograft Reconstruction After Tumor Resection? A Preclinical Synthetic Bone Study.

机构信息

Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

TECHNA Institute, Guided Therapeutics (GTx) Program, University Health Network, Toronto, Ontario, Canada.

出版信息

Clin Orthop Relat Res. 2024 Oct 1;482(10):1896-1908. doi: 10.1097/CORR.0000000000003116. Epub 2024 May 15.

Abstract

BACKGROUND

Joint-sparing resection of periarticular bone tumors can be challenging because of complex geometry. Successful reconstruction of periarticular bone defects after tumor resection is often performed with structural allografts to allow for joint preservation. However, achieving a size-matched allograft to fill the defect can be challenging because allograft sizes vary, they do not always match a patient's anatomy, and cutting the allograft to perfectly fit the defect is demanding.

QUESTIONS/PURPOSES: (1) Is there a difference in mental workload among the freehand, patient-specific instrumentation, and surgical navigation approaches? (2) Is there a difference in conformance (quantitative measure of deviation from the ideal bone graft), elapsed time during reconstruction, and qualitative assessment of goodness-of-fit of the allograft reconstruction among the approaches?

METHODS

Seven surgeons used three modalities in the same order (freehand, patient-specific instrumentation, and surgical navigation) to fashion synthetic bone to reconstruct a standardized bone defect. National Aeronautics and Space Administration (NASA) mental task load index questionnaires and procedure time were captured. Cone-beam CT images of the shaped allografts were used to measure conformance (quantitative measure of deviation from the ideal bone graft) to a computer-generated ideal bone graft model. Six additional (senior) surgeons blinded to modality scored the quality of fit of the allografts into the standardized tumor defect using a 10-point Likert scale. We measured conformance using the root-mean-square metric in mm and used ANOVA for multipaired comparisons (p < 0.05 was significant).

RESULTS

There was no difference in mental NASA total task load scores among the freehand, patient-specific instrumentation, and surgical navigation techniques. We found no difference in conformance root-mean-square values (mean ± SD) between surgical navigation (2 ± 0 mm; mean values have been rounded to whole numbers) and patient-specific instrumentation (2 ± 1 mm), but both showed a small improvement compared with the freehand approach (3 ± 1 mm). For freehand versus surgical navigation, the mean difference was 1 mm (95% confidence interval [CI] 0.5 to 1.1; p = 0.01). For freehand versus patient-specific instrumentation, the mean difference was 1 mm (95% CI -0.1 to 0.9; p = 0.02). For patient-specific instrumentation versus surgical navigation, the mean difference was 0 mm (95% CI -0.5 to 0.2; p = 0.82). In evaluating the goodness of fit of the shaped grafts, we found no clinically important difference between surgical navigation (median [IQR] 7 [6 to 8]) and patient-specific instrumentation (median 6 [5 to 7.8]), although both techniques had higher scores than the freehand technique did (median 3 [2 to 4]). For freehand versus surgical navigation, the difference of medians was 4 (p < 0.001). For freehand versus patient-specific instrumentation, the difference of medians was 3 (p < 0.001). For patient-specific instrumentation versus surgical navigation, the difference of medians was 1 (p = 0.03). The mean ± procedural times for freehand was 16 ± 10 minutes, patient-specific instrumentation was 14 ± 9 minutes, and surgical navigation techniques was 24 ± 8 minutes. We found no differences in procedure times across three shaping modalities (freehand versus patient-specific instrumentation: mean difference 2 minutes [95% CI 0 to 7]; p = 0.92; freehand versus surgical navigation: mean difference 8 minutes [95% CI 0 to 20]; p = 0.23; patient-specific instrumentation versus surgical navigation: mean difference 10 minutes [95% CI 1 to 19]; p = 0.12).

CONCLUSION

Based on surgical simulation to reconstruct a standardized periarticular bone defect after tumor resection, we found a possible small advantage to surgical navigation over patient-specific instrumentation based on qualitative fit, but both techniques provided slightly better conformance of the shaped graft for fit into the standardized post-tumor resection bone defect than the freehand technique did. To determine whether these differences are clinically meaningful requires further study. The surgical navigation system presented here is a product of laboratory research development, and although not ready to be widely deployed for clinical practice, it is currently being used in a research operating room setting for patient care. This new technology is associated with a learning curve, capital costs, and potential risk. The reported preliminary results are based on a preclinical synthetic bone tumor study, which is not as realistic as actual surgical scenarios.

CLINICAL RELEVANCE

Surgical navigation systems are an emerging technology in orthopaedic and reconstruction surgery, and understanding their capabilities and limitations is paramount for clinical practice. Given our preliminary findings in a small cohort study with one scenario of standardized synthetic periarticular bone tumor defects, future investigations should include different surgical scenarios using allograft and cadaveric specimens in a more realistic surgical setting.

摘要

背景

由于复杂的几何形状,关节周围骨肿瘤的保关节切除术具有挑战性。肿瘤切除后关节周围骨缺损的成功重建通常采用结构性同种异体移植物进行,以允许关节保留。然而,要实现大小匹配的同种异体移植物来填充缺损可能具有挑战性,因为同种异体移植物的尺寸不同,它们并不总是与患者的解剖结构相匹配,而且切割同种异体移植物以完美贴合缺损是非常困难的。

问题/目的:(1)徒手、个体化器械和手术导航方法之间的脑力工作负荷是否存在差异?(2)在重建过程中,是否存在从理想骨移植物的偏差(定量测量)、时间以及同种异体移植物重建的拟合质量(定性评估)方面的差异?

方法

7 名外科医生以相同的顺序(徒手、个体化器械和手术导航)使用三种方法来塑造合成骨,以重建标准化的骨缺损。记录美国国家航空航天局(NASA)脑力任务负荷指数问卷和手术时间。使用锥形束 CT 图像测量同种异体移植物的形状,以测量与计算机生成的理想骨移植物模型的符合程度(从理想骨移植物的偏差的定量测量)。另外 6 名(高级)外科医生对同种异体移植物的拟合质量进行评分,使用 10 分制的李克特量表将其评分标准为标准化肿瘤缺损。我们使用均方根度量法(mm)测量符合程度,并使用 ANOVA 进行多配对比较(p<0.05 为显著)。

结果

徒手、个体化器械和手术导航技术之间的 NASA 总任务负荷评分无差异。我们发现手术导航(2±0mm;平均值已四舍五入到整数)和个体化器械(2±1mm)之间的符合程度的均方根值(平均值±标准差)没有差异,但与徒手方法相比,两者都有较小的改善。对于徒手与手术导航相比,平均差异为 1mm(95%置信区间[CI]为 0.5 至 1.1;p=0.01)。对于徒手与个体化器械相比,平均差异为 1mm(95%CI为-0.1 至 0.9;p=0.02)。对于个体化器械与手术导航相比,平均差异为 0mm(95%CI 为-0.5 至 0.2;p=0.82)。在评估成形移植物的拟合质量时,我们发现手术导航(中位数[IQR]为 7[6 至 8])和个体化器械(中位数为 6[5 至 7.8])之间没有明显的临床差异,尽管两种技术的评分都高于徒手技术(中位数为 3[2 至 4])。对于徒手与手术导航相比,中位数差异为 4(p<0.001)。对于徒手与个体化器械相比,中位数差异为 3(p<0.001)。对于个体化器械与手术导航相比,中位数差异为 1(p=0.03)。徒手的平均手术时间±为 16±10 分钟,个体化器械为 14±9 分钟,手术导航技术为 24±8 分钟。我们在三种成形模式下的手术时间没有差异(徒手与个体化器械:平均差异为 2 分钟[95%CI 0 至 7];p=0.92;徒手与手术导航:平均差异为 8 分钟[95%CI 0 至 20];p=0.23;个体化器械与手术导航:平均差异为 10 分钟[95%CI 1 至 19];p=0.12)。

结论

基于肿瘤切除后重建标准化关节周围骨缺损的手术模拟,我们发现手术导航相对于个体化器械可能具有优势,基于定性拟合,但两种技术都提供了稍好的符合程度,成形移植物的形状更适合标准化的肿瘤切除后骨缺损,而不是徒手技术。要确定这些差异是否具有临床意义,需要进一步研究。这里提出的手术导航系统是实验室研究开发的产物,尽管还没有准备好广泛应用于临床实践,但它目前正在研究手术室中用于患者护理。这种新技术存在学习曲线、资本成本和潜在风险。报告的初步结果基于一项合成骨肿瘤的临床前研究,该研究并不像实际手术场景那样具有现实性。

临床意义

手术导航系统是矫形和重建外科领域的一项新兴技术,了解其功能和局限性对临床实践至关重要。鉴于我们在一个标准化合成关节周围骨肿瘤缺损的小队列研究中的初步发现,未来的研究应该包括使用异体移植物和尸体标本的不同手术场景,以更现实的手术环境进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b0/11419413/0d50075e9a79/abjs-482-1896-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验