IEEE J Biomed Health Inform. 2024 Sep;28(9):5280-5289. doi: 10.1109/JBHI.2024.3407116. Epub 2024 Sep 5.
Positron emission tomography/magnetic resonance imaging (PET/MRI) systems can provide precise anatomical and functional information with exceptional sensitivity and accuracy for neurological disorder detection. Nevertheless, the radiation exposure risks and economic costs of radiopharmaceuticals may pose significant burdens on patients. To mitigate image quality degradation during low-dose PET imaging, we proposed a novel 3D network equipped with a spatial brain transform (SBF) module for low-dose whole-brain PET and MR images to synthesize high-quality PET images. The FreeSurfer toolkit was applied to derive the spatial brain anatomical alignment information, which was then fused with low-dose PET and MR features through the SBF module. Moreover, several deep learning methods were employed as comparison measures to evaluate the model performance, with the peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and Pearson correlation coefficient (PCC) serving as quantitative metrics. Both the visual results and quantitative results illustrated the effectiveness of our approach. The obtained PSNR and SSIM were 41.96 ± 4.91 dB (p < 0.01) and 0.9654 ± 0.0215 (p < 0.01), which achieved a 19% and 20% improvement, respectively, compared to the original low-dose brain PET images. The volume of interest (VOI) analysis of brain regions such as the left thalamus (PCC = 0.959) also showed that the proposed method could achieve a more accurate standardized uptake value (SUV) distribution while preserving the details of brain structures. In future works, we hope to apply our method to other multimodal systems, such as PET/CT, to assist clinical brain disease diagnosis and treatment.
正电子发射断层扫描/磁共振成像(PET/MRI)系统可以提供精确的解剖学和功能信息,具有极高的敏感性和准确性,可用于检测神经紊乱。然而,放射性药物的辐射暴露风险和经济成本可能会给患者带来重大负担。为了在低剂量 PET 成像中降低图像质量下降的风险,我们提出了一种新型的 3D 网络,该网络配备了空间大脑变换(SBF)模块,用于低剂量全脑 PET 和 MR 图像的合成,以生成高质量的 PET 图像。使用 FreeSurfer 工具包来获取空间大脑解剖配准信息,然后通过 SBF 模块将其与低剂量 PET 和 MR 特征融合。此外,还采用了几种深度学习方法作为比较措施来评估模型性能,使用峰值信噪比(PSNR)、结构相似性(SSIM)和 Pearson 相关系数(PCC)作为定量指标。视觉结果和定量结果都表明了我们方法的有效性。获得的 PSNR 和 SSIM 分别为 41.96±4.91dB(p<0.01)和 0.9654±0.0215(p<0.01),与原始低剂量脑 PET 图像相比,分别提高了 19%和 20%。对左丘脑等脑区的感兴趣体积(VOI)分析(PCC=0.959)也表明,该方法可以在保持脑结构细节的同时,实现更准确的标准化摄取值(SUV)分布。在未来的工作中,我们希望将我们的方法应用于其他多模态系统,如 PET/CT,以协助临床脑疾病的诊断和治疗。