Suppr超能文献

双信息增强多视图属性图聚类

Dual Information Enhanced Multiview Attributed Graph Clustering.

作者信息

Lin Jia-Qi, Chen Man-Sheng, Zhu Xi-Ran, Wang Chang-Dong, Zhang Haizhang

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6466-6477. doi: 10.1109/TNNLS.2024.3401449. Epub 2025 Apr 4.

Abstract

Multiview attributed graph clustering is an important approach to partition multiview data based on the attribute characteristics and adjacent matrices from different views. Some attempts have been made in using graph neural network (GNN), which have achieved promising clustering performance. Despite this, few of them pay attention to the inherent specific information embedded in multiple views. Meanwhile, they are incapable of recovering the latent high-level representation from the low-level ones, greatly limiting the downstream clustering performance. To fill these gaps, a novel dual information enhanced multiview attributed graph clustering (DIAGC) method is proposed in this article. Specifically, the proposed method introduces the specific information reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views, which enables graph convolutional network (GCN) to capture the more essential low-level representations. Besides, the contrastive learning (CL) module maximizes the agreement between the latent high-level representation and low-level ones and enables the high-level representation to satisfy the desired clustering structure with the help of the self-supervised clustering (SC) module. Extensive experiments on several real-world benchmarks demonstrate the effectiveness of the proposed DIAGC method compared with the state-of-the-art baselines.

摘要

多视图属性图聚类是一种基于不同视图的属性特征和邻接矩阵对多视图数据进行划分的重要方法。在使用图神经网络(GNN)方面已经进行了一些尝试,并取得了有前景的聚类性能。尽管如此,其中很少有方法关注多视图中嵌入的固有特定信息。同时,它们无法从低级表示中恢复潜在的高级表示,这极大地限制了下游聚类性能。为了填补这些空白,本文提出了一种新颖的双信息增强多视图属性图聚类(DIAGC)方法。具体而言,所提出的方法引入了特定信息重建(SIR)模块,以从多视图中解开对共识信息和特定信息的探索,这使得图卷积网络(GCN)能够捕获更本质的低级表示。此外,对比学习(CL)模块最大化了潜在高级表示和低级表示之间的一致性,并借助自监督聚类(SC)模块使高级表示满足所需的聚类结构。在几个真实世界基准上进行的大量实验表明,与现有最先进的基线相比,所提出的DIAGC方法是有效的。

相似文献

1
Dual Information Enhanced Multiview Attributed Graph Clustering.双信息增强多视图属性图聚类
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6466-6477. doi: 10.1109/TNNLS.2024.3401449. Epub 2025 Apr 4.
2
Contrastive Multiview Attribute Graph Clustering With Adaptive Encoders.基于自适应编码器的对比多视图属性图聚类
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):7184-7195. doi: 10.1109/TNNLS.2024.3391801. Epub 2025 Apr 4.
3
Clustering Enhanced Multiplex Graph Contrastive Representation Learning.聚类增强的多通道图对比表示学习
IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):1341-1355. doi: 10.1109/TNNLS.2023.3334751. Epub 2025 Jan 7.
4
Multiview Representation Learning With One-to-Many Dynamic Relationships.具有一对多动态关系的多视图表示学习
IEEE Trans Neural Netw Learn Syst. 2025 Jul;36(7):13051-13065. doi: 10.1109/TNNLS.2024.3482408.
5
Iterative Deep Structural Graph Contrast Clustering for Multiview Raw Data.用于多视图原始数据的迭代深度结构图形对比聚类
IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):18272-18284. doi: 10.1109/TNNLS.2023.3313692. Epub 2024 Dec 2.
6
Dual Contrastive Learning Network for Graph Clustering.用于图聚类的双对比学习网络。
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):10846-10856. doi: 10.1109/TNNLS.2023.3244397. Epub 2024 Aug 5.
8
Anchor-Sharing and Cluster-Wise Contrastive Network for Multiview Representation Learning.用于多视图表示学习的锚点共享和聚类对比网络
IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):3797-3807. doi: 10.1109/TNNLS.2024.3357087. Epub 2025 Feb 6.
9
Deep graph clustering via aligning representation learning.通过对齐表示学习进行深度图聚类
Neural Netw. 2025 Mar;183:106927. doi: 10.1016/j.neunet.2024.106927. Epub 2024 Nov 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验