Suppr超能文献

基于图谱的静息态功能磁共振成像标记

Atlas-Based Labeling of Resting-State fMRI.

作者信息

Kambli Hrishikesh, Santamaria-Pang Alberto, Tarapov Ivan, Beheshtian Elham, Luna Licia P, Sair Haris, Jones Craig

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

Health AI, Microsoft, Redmond, Washington, USA.

出版信息

Brain Connect. 2024 Aug;14(6):319-326. doi: 10.1089/brain.2023.0080. Epub 2024 Jul 10.

Abstract

Functional magnetic resonance imaging (fMRI) has the potential to provide noninvasive functional mapping of the brain with high spatial and temporal resolution. However, fMRI independent components (ICs) must be manually inspected, selected, and interpreted, requiring time and expertise. We propose a novel approach for automated labeling of fMRI ICs by establishing their characteristic spatio-functional relationship. The approach identifies 9 resting-state networks and 45 ICs and generates a functional activation feature map that quantifies the spatial distribution, relative to an anatomical labeled atlas, of the z-scores of each IC across a cohort of 176 subjects. The cosine-similarity metric was used to classify unlabeled ICs based on the similarity to the spatial distribution of activation with the pregenerated feature map. The approach was tested on three fMRI datasets from the 1000 functional connectome projects, consisting of 280 subjects, that were not included in feature map generation. The results demonstrate the effectiveness of the approach in classifying ICs based on their spatial features with an accuracy of better than 95%. The approach significantly reduces expert time and computation time required for labeling ICs, while improving reliability and accuracy. The spatio-functional relationship also provides an explainable relationship between the functional activation and the anatomically defined regions.

摘要

功能磁共振成像(fMRI)有潜力以高空间和时间分辨率提供大脑的无创功能图谱。然而,fMRI独立成分(ICs)必须手动检查、选择和解释,这需要时间和专业知识。我们提出了一种通过建立其特征性时空功能关系来自动标记fMRI ICs的新方法。该方法识别出9个静息态网络和45个ICs,并生成一个功能激活特征图,该图相对于一个解剖标记图谱量化了176名受试者队列中每个IC的z分数的空间分布。余弦相似度度量用于根据与预先生成的特征图的激活空间分布的相似度对未标记的ICs进行分类。该方法在来自1000个功能连接组项目的三个fMRI数据集上进行了测试,这些数据集由280名受试者组成,未包含在特征图生成中。结果证明了该方法基于ICs的空间特征进行分类的有效性,准确率优于95%。该方法显著减少了标记ICs所需的专家时间和计算时间,同时提高了可靠性和准确性。时空功能关系还提供了功能激活与解剖学定义区域之间的可解释关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验