文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于定量分析重建图像质量的系统的 3-D 磁性粒子成像模拟模型。

A systematic 3-D magnetic particle imaging simulation model for quantitative analysis of reconstruction image quality.

机构信息

School of Computer Science and Engineering, Southeast University, Nanjing 211189, China.

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Comput Methods Programs Biomed. 2024 Jul;252:108250. doi: 10.1016/j.cmpb.2024.108250. Epub 2024 May 24.


DOI:10.1016/j.cmpb.2024.108250
PMID:38815547
Abstract

BACKGROUND AND OBJECTIVE: Magnetic particle imaging (MPI) is an emerging imaging technology in medical tomography that utilizes the nonlinear magnetization response of superparamagnetic iron oxide (SPIO) particles to determine the in vivo spatial distribution of nanoparticle contrast agents. The reconstruction image quality of MPI is determined by the characteristics of magnetic particles, the setting of the MPI scanner parameters, and the hardware interference of MPI systems. We explore a feasible method to systematically and quickly analyze the impact of these factors on MPI reconstruction image quality. METHODS: We propose a systematic 3-D MPI simulation model. The MPI simulation model has the capability of quickly producing the simulated reconstruction images of a scanned phantom, and quantitative analysis of MPI reconstruction image quality can be achieved by comparing the differences between the input image and output image. These factors are mainly classified as imaging parameters and interference parameters in our model. In order to reduce the computational time of the simulation model, we introduce GPU parallel programming to accelerate the processing of large complex matrix data. For ease of use, we also construct a reliable, high-performance, and open-source 3-D MPI simulation software tool based on our model. The efficiency of our model is evaluated by using OpenMPIData. To demonstrate the capabilities of our model, we conduct simulation experiments using parameters consistent with a real MPI scanner for improving MPI image quality. RESULTS: The experimental results show that our simulation model can systematically and quickly evaluate the impact of imaging parameters and interference parameters on MPI reconstruction image quality. CONCLUSIONS: We developed an easy-to-use and open-source 3-D MPI simulation software tool based on our simulation model incorporating all the stages of MPI formation, from signal acquisition to image reconstruction. In the future, our simulation model has potential guiding significance to practical MPI images.

摘要

背景与目的:磁性粒子成像(MPI)是一种新兴的医学层析成像技术,利用超顺磁氧化铁(SPIO)粒子的非线性磁化响应来确定纳米颗粒造影剂在体内的空间分布。MPI 的重建图像质量取决于磁性粒子的特性、MPI 扫描仪参数的设置以及 MPI 系统的硬件干扰。我们探索了一种可行的方法来系统地快速分析这些因素对 MPI 重建图像质量的影响。

方法:我们提出了一种系统的 3-D MPI 模拟模型。该 MPI 模拟模型能够快速生成扫描体模的模拟重建图像,通过比较输入图像和输出图像之间的差异,可以对 MPI 重建图像质量进行定量分析。这些因素在我们的模型中主要分为成像参数和干扰参数。为了减少模拟模型的计算时间,我们引入 GPU 并行编程来加速处理大型复杂矩阵数据。为了便于使用,我们还基于我们的模型构建了一个可靠、高性能和开源的 3-D MPI 模拟软件工具。我们使用 OpenMPIData 来评估我们模型的效率。为了展示我们模型的能力,我们使用与真实 MPI 扫描仪一致的参数进行了模拟实验,以提高 MPI 图像质量。

结果:实验结果表明,我们的模拟模型可以系统地快速评估成像参数和干扰参数对 MPI 重建图像质量的影响。

结论:我们开发了一个基于我们的模拟模型的易用且开源的 3-D MPI 模拟软件工具,该模型整合了 MPI 形成的所有阶段,从信号采集到图像重建。在未来,我们的模拟模型对实际 MPI 图像具有潜在的指导意义。

相似文献

[1]
A systematic 3-D magnetic particle imaging simulation model for quantitative analysis of reconstruction image quality.

Comput Methods Programs Biomed. 2024-7

[2]
MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction.

Med Phys. 2024-8

[3]
Trajectory analysis for field free line magnetic particle imaging.

Med Phys. 2019-2-22

[4]
PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging.

Med Phys. 2023-4

[5]
A greedy regularized block Kaczmarz method for accelerating reconstruction in magnetic particle imaging.

Phys Med Biol. 2024-7-16

[6]
Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging.

Med Phys. 2020-4

[7]
Space-Specific Mixing Excitation for High-SNR Spatial Encoding in Magnetic Particle Imaging.

IEEE Trans Biomed Eng. 2024-10

[8]
Partial FOV Center Imaging (PCI): A Robust X-Space Image Reconstruction for Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2020-11

[9]
Transformer for low concentration image denoising in magnetic particle imaging.

Phys Med Biol. 2024-8-27

[10]
Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.

IEEE Trans Med Imaging. 2014-10-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索