School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China.
Med Phys. 2023 Apr;50(4):2354-2371. doi: 10.1002/mp.16048. Epub 2022 Oct 23.
BACKGROUND: Magnetic particle imaging (MPI) is a novel tomographic imaging modality that scans the distribution of superparamagnetic iron oxide nanoparticles. However, it is time-consuming to scan multiview two-dimensional (2D) projections for three-dimensional (3D) reconstruction in projection MPI, such as computed tomography (CT). An intuitive idea is to use the sparse-view projections for reconstruction to improve the temporal resolution. Tremendous progress has been made toward addressing the sparse-view problem in CT, because of the availability of large data sets. For the novel tomography of MPI, to the best of our knowledge, studies on the sparse-view problem have not yet been reported. PURPOSE: The acquisition of multiview projections for 3D MPI imaging is time-consuming. Our goal is to only acquire sparse-view projections for reconstruction to improve the 3D imaging temporal resolution of projection MPI. METHODS: We propose to address the sparse-view problem in projection MPI by generating novel projections. The data set we constructed consists of three parts: simulation data set (including 3000 3D data), four phantoms data, and an in vivo mouse data. The simulation data set is used to train and validate the network, and the phantoms and in vivo mouse data are used to test the network. When the number of novel generated projections meets the requirements of filtered back projection, the streaking artifacts will be absent from MPI tomographic imaging. Specifically, we propose a projection generative network (PGNet), that combines an attention mechanism, adversarial training strategy, and a fusion loss function and can generate novel projections based on sparse-view real projections. To the best of our knowledge, we are the first to propose a deep learning method to attempt to overcome the sparse-view problem in projection MPI. RESULTS: We compare our method with several sparse-view methods on phantoms and in vivo mouse data and validate the advantages and effectiveness of our proposed PGNet. Our proposed PGNet enables the 3D imaging temporal resolution of projection MPI to be improved by 6.6 times, while significantly suppressing the streaking artifacts. CONCLUSION: We proposed a deep learning method operated in projection domain to address the sparse-view reconstruction of MPI, and the data scarcity problem in projection MPI reconstruction is alleviated by constructing a sparse-dense simulated projection data set. By our proposed method, the number of acquisitions of real projections can be reduced. The advantage of our method is that it prevents the generation of streaking artifacts at the source. Our proposed sparse-view reconstruction method has great potential for application to time-sensitive in vivo 3D MPI imaging.
背景: 磁共振粒子成像(MPI)是一种新兴的层析成像方式,用于扫描超顺磁氧化铁纳米粒子的分布。然而,在投影 MPI 中,如计算机断层扫描(CT),对三维(3D)重建进行多视角二维(2D)投影扫描非常耗时。一个直观的想法是使用稀疏视图投影进行重建,以提高时间分辨率。由于大量数据集的可用性,在 CT 中解决稀疏视图问题已经取得了巨大进展。对于 MPI 的新型层析成像,据我们所知,尚未有研究报道稀疏视图问题的研究。 目的: 用于 3D MPI 成像的多视角投影采集非常耗时。我们的目标是仅采集稀疏视图投影进行重建,以提高投影 MPI 的 3D 成像时间分辨率。 方法: 我们通过生成新的投影来解决投影 MPI 中的稀疏视图问题。我们构建的数据集包括三部分:模拟数据集(包括 3000 个 3D 数据)、四个体模数据和一个体内小鼠数据。模拟数据集用于训练和验证网络,体模和体内小鼠数据用于测试网络。当新生成的投影数量满足滤波反投影的要求时,MPI 层析成像中的条纹伪影将消失。具体来说,我们提出了一种投影生成网络(PGNet),该网络结合了注意力机制、对抗训练策略和融合损失函数,可以基于稀疏视图实投影生成新的投影。据我们所知,我们是第一个提出深度学习方法尝试克服投影 MPI 中的稀疏视图问题的人。 结果: 我们在体模和体内小鼠数据上比较了我们的方法与几种稀疏视图方法,并验证了我们提出的 PGNet 的优势和有效性。我们提出的 PGNet 使投影 MPI 的 3D 成像时间分辨率提高了 6.6 倍,同时显著抑制了条纹伪影。 结论: 我们提出了一种在投影域中运行的深度学习方法来解决 MPI 的稀疏视图重建问题,并通过构建稀疏-密集模拟投影数据集来缓解投影 MPI 重建中的数据稀缺问题。通过我们提出的方法,可以减少实际投影的采集数量。我们方法的优点是可以防止伪影的产生。我们提出的稀疏视图重建方法具有在时间敏感的体内 3D MPI 成像中应用的巨大潜力。
Comput Methods Programs Biomed. 2022-11
Med Phys. 2015-11
Phys Med Biol. 2024-4-3
Phys Med. 2022-9
Mater Today Phys. 2023-3
J Magn Reson Imaging. 2025-1