Forsberg Jakob, Rasmussen Christian Tihic, van den Berg Frans W J, Engelsen Søren Balling, Aru Violetta
Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark; Novo Nordisk A/S, Hagedornsvej 1, 2820, Gentofte, Denmark.
Novo Nordisk A/S, Hagedornsvej 1, 2820, Gentofte, Denmark.
Anal Chim Acta. 2024 Jul 4;1311:342722. doi: 10.1016/j.aca.2024.342722. Epub 2024 May 15.
To perform fast, reproducible, and absolute quantitative measurements in an automated manner has become of paramount importance when monitoring industrial processes, including fermentations. Due to its numerous advantages - including its inherent quantitative nature - Proton Nuclear Magnetic Resonance (H NMR) spectroscopy provides an ideal tool for the time-resolved monitoring of fermentations. However, analytical conditions, including non-automated sample preparation and long relaxation times (T) of some metabolites, can significantly lengthen the experimental time and make implementation in an industrial set up unfeasible.
We present a high throughput method based on Standard Operating Procedures (SOPs) and H NMR, which lays the foundation for what we call Fermentation Analytical Technology (FAT). Our method was developed for the accurate absolute quantification of metabolites produced during Escherichia coli industrial fermentations. The method includes: (1) a stopped flow system for non-invasive sample collection followed by sample quenching, (2) automatic robot-assisted sample preparation, (3) fast H NMR measurements, (4) metabolites quantification using multivariate curve resolution (MCR), and (5) metabolites absolute quantitation using a novel correction factor (k) to compensate for the short recycle delay (D1) employed in the H NMR measurements. The quantification performance was tested using two sample types: buffer solutions of chemical standards and real fermentation samples. Five metabolites - glucose, acetate, alanine, phenylalanine and betaine - were quantified. Absolute quantitation ranged between 0.64 and 3.40 mM in pure buffer, and 0.71-7.76 mM in real samples.
The proposed method is generic and can be straight forward implemented to other types of fermentations, such as lactic acid, ethanol and acetic acid fermentations. It provides a high throughput automated solution for monitoring fermentation processes and for quality control through absolute quantification of key metabolites in fermentation broth. It can be easily implemented in an at-line industrial setting, facilitating the optimization of the manufacturing process towards higher yields and more efficient and sustainable use of resources.
在监测包括发酵在内的工业过程时,以自动化方式进行快速、可重复且绝对定量的测量变得至关重要。由于其诸多优点——包括其固有的定量特性——质子核磁共振(H NMR)光谱为发酵的时间分辨监测提供了理想工具。然而,分析条件,包括非自动化的样品制备以及某些代谢物的长弛豫时间(T),会显著延长实验时间,并使得在工业装置中实施变得不可行。
我们提出了一种基于标准操作规程(SOP)和H NMR的高通量方法,为我们所称的发酵分析技术(FAT)奠定了基础。我们的方法是为准确绝对定量大肠杆菌工业发酵过程中产生的代谢物而开发的。该方法包括:(1)用于非侵入性样品采集并随后进行样品淬灭的停流系统,(2)自动机器人辅助的样品制备,(3)快速H NMR测量,(4)使用多元曲线分辨(MCR)进行代谢物定量,以及(5)使用新型校正因子(k)进行代谢物绝对定量,以补偿H NMR测量中采用的短循环延迟(D1)。使用两种样品类型测试了定量性能:化学标准品的缓冲溶液和实际发酵样品。对五种代谢物——葡萄糖、乙酸盐、丙氨酸、苯丙氨酸和甜菜碱——进行了定量。在纯缓冲液中绝对定量范围为0.64至3.40 mM,在实际样品中为0.71 - 7.76 mM。
所提出的方法具有通用性,可直接应用于其他类型的发酵,如乳酸、乙醇和乙酸发酵。它为监测发酵过程以及通过绝对定量发酵液中的关键代谢物进行质量控制提供了高通量自动化解决方案。它可以很容易地在在线工业环境中实施,有助于优化制造过程以实现更高的产量以及更高效和可持续的资源利用。