Suppr超能文献

在铜晶界构建有利于将CO电催化转化为多碳产物的微环境。

Constructing Favorable Microenvironment on Copper Grain Boundaries for CO Electro-conversion to Multicarbon Products.

作者信息

Kong Yan, Yang Hengpan, Jia Xinmei, Wan Da, Zhang Yilei, Hu Qi, He Chuanxin

机构信息

Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China.

出版信息

Nano Lett. 2024 Jul 31;24(30):9345-9352. doi: 10.1021/acs.nanolett.4c02343. Epub 2024 Jul 16.

Abstract

The electrochemical CO reduction reaction (eCORR) to multicarbon chemicals provides a promising avenue for storing renewable energy. Herein, we synthesized small Cu nanoparticles featuring enriched tiny grain boundaries (RGBs-Cu) through spatial confinement and electroreduction. spectroscopy and theoretical calculations demonstrate that small-sized Cu grain boundaries significantly enhance the adsorption of the *CO intermediate, owing to the presence of abundant low-coordinated and disordered atoms. Furthermore, these grain boundaries, generated under high current conditions, exhibit excellent stability during the eCORR process, thereby creating a stable *CO-rich microenvironment. This high local *CO concentration around the catalyst surface can reduce the energy barrier for C-C coupling and significantly increase the Faradaic efficiency (FE) for multicarbon products across both neutral and alkaline electrolytes. Specifically, the developed RGBs-Cu electrocatalyst achieved a peak FE of 77.3% for multicarbon products and maintained more than 134 h stability at a constant current density of -500 mA cm.

摘要

将电化学CO还原反应(eCORR)用于制备多碳化学品为储存可再生能源提供了一条很有前景的途径。在此,我们通过空间限制和电还原合成了具有丰富微小晶界的小尺寸铜纳米颗粒(RGBs-Cu)。光谱学和理论计算表明,由于存在大量低配位和无序原子,小尺寸铜晶界显著增强了CO中间体的吸附。此外,这些在高电流条件下产生的晶界在eCORR过程中表现出优异的稳定性,从而创造了一个稳定的富含CO的微环境。催化剂表面周围这种高局部*CO浓度可以降低C-C偶联的能量势垒,并显著提高中性和碱性电解质中多碳产物的法拉第效率(FE)。具体而言,所开发的RGBs-Cu电催化剂对多碳产物的峰值FE达到77.3%,并在-500 mA cm的恒定电流密度下保持了超过134小时的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验