Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
Amsterdam Institute of Molecular and Life Sciences, Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, 1081 HZ, Amsterdam, The Netherlands.
Nat Commun. 2024 May 30;15(1):4611. doi: 10.1038/s41467-024-49000-x.
G protein-coupled receptors (GPCRs) are pivotal therapeutic targets, but their complex structure poses challenges for effective drug design. Nanobodies, or single-domain antibodies, have emerged as a promising therapeutic strategy to target GPCRs, offering advantages over traditional small molecules and antibodies. However, an incomplete understanding of the structural features enabling GPCR-nanobody interactions has limited their development. In this study, we investigate VUN701, a nanobody antagonist targeting the atypical chemokine receptor 3 (ACKR3). We determine that an extended CDR3 loop is required for ACKR3 binding. Uncommon in most nanobodies, an extended CDR3 is prevalent in GPCR-targeting nanobodies. Combining experimental and computational approaches, we map an inhibitory ACKR3-VUN701 interface and define a distinct conformational mechanism for GPCR inactivation. Our results provide insights into class A GPCR-nanobody selectivity and suggest a strategy for the development of these new therapeutic tools.
G 蛋白偶联受体(GPCRs)是重要的治疗靶点,但它们复杂的结构给有效的药物设计带来了挑战。纳米抗体,或单域抗体,已成为一种有前途的靶向 GPCR 的治疗策略,相对于传统的小分子和抗体具有优势。然而,对 GPCR-纳米抗体相互作用的结构特征的不完全了解限制了它们的发展。在这项研究中,我们研究了靶向非典型趋化因子受体 3(ACKR3)的纳米抗体拮抗剂 VUN701。我们确定了一个扩展的 CDR3 环是与 ACKR3 结合所必需的。在大多数纳米抗体中不常见,而在靶向 GPCR 的纳米抗体中则很常见。我们结合实验和计算方法,绘制了一个抑制性的 ACKR3-VUN701 界面,并定义了 GPCR 失活的独特构象机制。我们的研究结果为 A 类 GPCR-纳米抗体的选择性提供了深入的了解,并为这些新的治疗工具的开发提供了一种策略。