Suppr超能文献

用于研究G蛋白偶联受体结构与功能的纳米抗体

Nanobodies to Study G Protein-Coupled Receptor Structure and Function.

作者信息

Manglik Aashish, Kobilka Brian K, Steyaert Jan

机构信息

Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305; email:

Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; email:

出版信息

Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:19-37. doi: 10.1146/annurev-pharmtox-010716-104710. Epub 2016 Dec 7.

Abstract

Ligand-induced activation of G protein-coupled receptors (GPCRs) is a key mechanism permitting communication between cells and organs. Enormous progress has recently elucidated the structural and dynamic features of GPCR transmembrane signaling. Nanobodies, the recombinant antigen-binding fragments of camelid heavy-chain-only antibodies, have emerged as important research tools to lock GPCRs in particular conformational states. Active-state stabilizing nanobodies have elucidated several agonist-bound structures of hormone-activated GPCRs and have provided insight into the dynamic character of receptors. Nanobodies have also been used to stabilize transient GPCR transmembrane signaling complexes, yielding the first structural insights into GPCR signal transduction across the cellular membrane. Beyond their in vitro uses, nanobodies have served as conformational biosensors in living systems and have provided novel ways to modulate GPCR function. Here, we highlight several examples of how nanobodies have enabled the study of GPCR function and give insights into potential future uses of these important tools.

摘要

配体诱导的G蛋白偶联受体(GPCRs)激活是细胞与器官之间进行通讯的关键机制。最近取得的巨大进展阐明了GPCR跨膜信号传导的结构和动态特征。纳米抗体是骆驼科仅重链抗体的重组抗原结合片段,已成为将GPCR锁定在特定构象状态的重要研究工具。活性状态稳定纳米抗体阐明了激素激活的GPCRs的几种激动剂结合结构,并提供了对受体动态特征的深入了解。纳米抗体还被用于稳定瞬时GPCR跨膜信号复合物,首次对GPCR跨细胞膜的信号转导提供了结构上的见解。除了在体外的应用,纳米抗体还作为活系统中的构象生物传感器,并提供了调节GPCR功能的新方法。在这里,我们重点介绍几个纳米抗体如何促进GPCR功能研究的例子,并深入探讨这些重要工具未来可能的用途。

相似文献

1
Nanobodies to Study G Protein-Coupled Receptor Structure and Function.
Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:19-37. doi: 10.1146/annurev-pharmtox-010716-104710. Epub 2016 Dec 7.
2
Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs.
Mol Cell Endocrinol. 2019 Mar 15;484:15-24. doi: 10.1016/j.mce.2019.01.021. Epub 2019 Jan 26.
4
Nanobodies as sensors of GPCR activation and signaling.
Methods Cell Biol. 2021;166:161-177. doi: 10.1016/bs.mcb.2021.06.008. Epub 2021 Jul 30.
5
Nanobodies detecting and modulating GPCRs outside in and inside out.
Curr Opin Cell Biol. 2019 Apr;57:115-122. doi: 10.1016/j.ceb.2019.01.003. Epub 2019 Mar 5.
6
Structural basis for selectivity and antagonism in extracellular GPCR-nanobodies.
Nat Commun. 2024 May 30;15(1):4611. doi: 10.1038/s41467-024-49000-x.
7
Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation.
Nature. 2016 Jul 21;535(7612):448-52. doi: 10.1038/nature18636. Epub 2016 Jul 13.
9
Nanobody stabilization of G protein-coupled receptor conformational states.
Curr Opin Struct Biol. 2011 Aug;21(4):567-72. doi: 10.1016/j.sbi.2011.06.011. Epub 2011 Jul 21.
10
Yeast surface display platform for rapid discovery of conformationally selective nanobodies.
Nat Struct Mol Biol. 2018 Mar;25(3):289-296. doi: 10.1038/s41594-018-0028-6. Epub 2018 Feb 12.

引用本文的文献

1
Deciphering molecular determinants of GPBAR1-Gs protein interactions by HDX-MS and cryo-EM.
Sci Rep. 2025 Aug 26;15(1):31517. doi: 10.1038/s41598-025-16529-w.
3
Nanobodies targeting EGFR provide insight into conformations stabilized by glioblastoma mutations.
J Biol Chem. 2025 Jul;301(7):110374. doi: 10.1016/j.jbc.2025.110374. Epub 2025 Jun 12.
4
Nanobodies: From Discovery to AI-Driven Design.
Biology (Basel). 2025 May 14;14(5):547. doi: 10.3390/biology14050547.
5
Emerging tools and methods to study cell signalling mediated by branched ubiquitin chains.
Biochem Soc Trans. 2025 Jun 30;53(3):579-592. doi: 10.1042/BST20253015.
6
Intersection of GPCR trafficking and cAMP signaling at endomembranes.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202409027. Epub 2025 Mar 25.
7
Epitope-directed selection of GPCR nanobody ligands with evolvable function.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2423931122. doi: 10.1073/pnas.2423931122. Epub 2025 Mar 11.
9
Trends in nanobody radiotheranostics.
Eur J Nucl Med Mol Imaging. 2025 May;52(6):2225-2238. doi: 10.1007/s00259-025-07077-6. Epub 2025 Jan 13.

本文引用的文献

1
Crystal structure of a substrate-engaged SecY protein-translocation channel.
Nature. 2016 Mar 17;531(7594):395-399. doi: 10.1038/nature17163. Epub 2016 Mar 7.
2
Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor.
Nature. 2016 Feb 11;530(7589):237-41. doi: 10.1038/nature16577. Epub 2016 Feb 3.
3
GPCRdb: an information system for G protein-coupled receptors.
Nucleic Acids Res. 2016 Jan 4;44(D1):D356-64. doi: 10.1093/nar/gkv1178. Epub 2015 Nov 17.
4
Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR.
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14254-9. doi: 10.1073/pnas.1519626112. Epub 2015 Nov 2.
5
Allosteric regulation of G protein-coupled receptor activity by phospholipids.
Nat Chem Biol. 2016 Jan;12(1):35-9. doi: 10.1038/nchembio.1960. Epub 2015 Nov 16.
6
How Can Mutations Thermostabilize G-Protein-Coupled Receptors?
Trends Pharmacol Sci. 2016 Jan;37(1):37-46. doi: 10.1016/j.tips.2015.09.005. Epub 2015 Nov 5.
7
Transient conformers of LacY are trapped by nanobodies.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13839-44. doi: 10.1073/pnas.1519485112. Epub 2015 Oct 28.
9
Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family.
Nat Struct Mol Biol. 2015 Oct;22(10):803-8. doi: 10.1038/nsmb.3091. Epub 2015 Sep 14.
10
Structures of G protein-coupled receptors reveal new opportunities for drug discovery.
Drug Discov Today. 2015 Nov;20(11):1355-64. doi: 10.1016/j.drudis.2015.08.003. Epub 2015 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验