Liu Yu-Chiao, Chu Kai-Ti, Wang Hong-Ru, Lee Gene-Hsiang, Tseng Mei-Chun, Wang Cheng-Hsin, Horng Yih-Chern, Chiang Ming-Hsi
Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan.
Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan.
Angew Chem Int Ed Engl. 2024 Aug 12;63(33):e202408142. doi: 10.1002/anie.202408142. Epub 2024 Jul 2.
[FeFe] hydrogenases demonstrate remarkable catalytic efficiency in hydrogen evolution and oxidation processes. However, susceptibility of these enzymes to oxygen-induced degradation impedes their practical deployment in hydrogen-production devices and fuel cells. Recent investigations into the oxygen-stable (H) state of the H-cluster revealed its inherent capacity to resist oxygen degradation. Herein, we present findings on Cl- and SH-bound [2Fe-2S] complexes, bearing relevance to the oxygen-stable state within a biological context. A characteristic attribute of these complexes is the terminal Cl/SH ligation to the iron center bearing the CO bridge. Structural analysis of the t-Cl demonstrates a striking resemblance to the H state of DdHydAB and CbA5H. The t-Cl/t-SH exhibit reversible oxidation, with both redox species, electronically, being the first biomimetic analogs to the H and H states. These complexes exhibit notable resistance against oxygen-induced decomposition, supporting the potential oxygen-resistant nature of the H and H states. The swift reductive release of the Cl-/SH-group demonstrates its labile and kinetically controlled binding. The findings garnered from these investigations offer valuable insights into properties of the enzymatic O-stable state, and key factors governing deactivation and reactivation conversion. This work contributes to the advancement of bio-inspired molecular catalysts and the integration of enzymes and artificial catalysts into H-evolution devices and fuel-cell applications.
[铁铁]氢化酶在析氢和氧化过程中表现出卓越的催化效率。然而,这些酶对氧诱导降解的敏感性阻碍了它们在制氢装置和燃料电池中的实际应用。最近对H簇的氧稳定(H)态的研究揭示了其抵抗氧降解的内在能力。在此,我们展示了与生物环境中的氧稳定态相关的氯和硫醇结合的[2铁-2硫]配合物的研究结果。这些配合物的一个特征属性是末端氯/硫醇与带有CO桥的铁中心相连。t-Cl的结构分析显示出与DdHydAB和CbA5H的H态有惊人的相似之处。t-Cl/t-SH表现出可逆氧化,这两种氧化还原物种在电子方面都是H和H态的首个仿生类似物。这些配合物对氧诱导的分解表现出显著的抗性,支持了H和H态潜在的抗氧性质。氯/硫醇基团的快速还原释放表明其不稳定且受动力学控制的结合。这些研究获得的结果为酶促氧稳定态的性质以及控制失活和再活化转化的关键因素提供了有价值的见解。这项工作有助于推进受生物启发的分子催化剂以及将酶和人工催化剂整合到析氢装置和燃料电池应用中。