Suppr超能文献

负载钴纳米粒子的磷掺杂生物炭高效降解过一硫酸盐激活四环素。

Efficient degradation of tetracycline peroxymonosulfate activation by phosphorus-doped biochar loaded with cobalt nanoparticles.

机构信息

Institute of Environmental Science, School of Environmental and Resources Sciences, Shanxi University, 030006, China.

Shanxi Laboratory for Yellow River, Taiyuan 030006, China.

出版信息

Dalton Trans. 2024 Jun 17;53(24):10189-10200. doi: 10.1039/d4dt00758a.

Abstract

The accumulation of tetracycline hydrochloride (TCH) threatens human health because of its potential biological toxicity. Carbon -based materials with easy isolation and excellent performance that can activate peroxymonosulfate (PMS) to generate reactive oxygen species for TCH degradation are essential, but the development of such materials remains a significant challenge. In this study, based on the idea of treating waste, tricobalt tetraoxide loaded P-doped biochar (Co NP-PBC) was synthesised to activate PMS for the degradation of TCH. Possible degradation pathways and intermediate products of TCH were identified using High performance liquid chromatography tandem mass spectrometry (HPLC-MS) detection and density functional theory analysis. Toxicity analysis software was used to predict the toxicity of the intermediate products. Compared to catalysts loaded with Fe and Mn and other Co-based catalysts, Co NP-PBC exhibited an optimal performance (with a kinetic constant of 0.157 min for TCH degradation), and over 99.0% of TCH can be degraded within 20 min. This mechanism demonstrates that the non-free radical oxidation of O plays a major role in the degradation of TCH. This study provides insights into the purification of wastewater using BC-based catalysts.

摘要

盐酸四环素(TCH)的积累对人类健康构成威胁,因为其具有潜在的生物毒性。能够激活过一硫酸盐(PMS)生成用于 TCH 降解的活性氧的、易于分离且性能优异的碳基材料至关重要,但此类材料的开发仍然是一个重大挑战。在本研究中,基于废物处理的理念,制备了负载三氧化二钴的 P 掺杂生物炭(Co NP-PBC)来激活 PMS 以降解 TCH。使用高效液相色谱串联质谱(HPLC-MS)检测和密度泛函理论分析鉴定了 TCH 的可能降解途径和中间产物。使用毒性分析软件预测了中间产物的毒性。与负载 Fe 和 Mn 的催化剂以及其他基于 Co 的催化剂相比,Co NP-PBC 表现出最佳的性能(TCH 降解的动力学常数为 0.157 min),在 20 min 内可以降解超过 99.0%的 TCH。该机制表明,O 的非自由基氧化在 TCH 的降解中起主要作用。本研究为使用基于 BC 的催化剂净化废水提供了思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验