Suppr超能文献

使用工具变量在粗化暴露模拟孟德尔随机化分析中的应用。

Use of the instrumental inequalities in simulated mendelian randomization analyses with coarsened exposures.

机构信息

Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA.

出版信息

Eur J Epidemiol. 2024 May;39(5):491-499. doi: 10.1007/s10654-024-01130-8. Epub 2024 May 31.

Abstract

Mendelian randomization (MR) requires strong unverifiable assumptions to estimate causal effects. However, for categorical exposures, the MR assumptions can be falsified using a method known as the instrumental inequalities. To apply the instrumental inequalities to a continuous exposure, investigators must coarsen the exposure, a process which can itself violate the MR conditions. Violations of the instrumental inequalities for an MR model with a coarsened exposure might therefore reflect the effect of coarsening rather than other sources of bias. We aim to evaluate how exposure coarsening affects the ability of the instrumental inequalities to detect bias in MR models with multiple proposed instruments under various causal structures. To do so, we simulated data mirroring existing studies of the effect of alcohol consumption on cardiovascular disease under a variety of exposure-outcome effects in which the MR assumptions were met for a continuous exposure. We categorized the exposure based on subject matter knowledge or the observed data distribution and applied the instrumental inequalities to MR models for the effects of the coarsened exposure. In simulations of multiple binary instruments, the instrumental inequalities did not detect bias under any magnitude of exposure outcome effect when the exposure was coarsened into more than 2 categories. However, in simulations of both single and multiple proposed instruments, the instrumental inequalities were violated in some scenarios when the exposure was dichotomized. The results of these simulations suggest that the instrumental inequalities are largely insensitive to bias due to exposure coarsening with greater than 2 categories, and could be used with coarsened exposures to evaluate the required assumptions in applied MR studies, even when the underlying exposure is truly continuous.

摘要

孟德尔随机化(MR)需要强有力的不可验证的假设来估计因果效应。然而,对于分类暴露,MR 假设可以使用一种称为工具性不平等的方法来验证。为了将工具性不平等应用于连续暴露,研究人员必须对暴露进行粗化,这一过程本身可能违反 MR 条件。因此,MR 模型中暴露粗化的工具性不平等的违反可能反映了粗化的影响,而不是其他偏倚来源。我们旨在评估在各种因果结构下,当使用多个建议工具时,暴露粗化如何影响工具性不平等检测 MR 模型中偏倚的能力。为此,我们模拟了现有的酒精消费对心血管疾病影响的研究数据,在这些研究中,连续暴露的 MR 假设得到了满足。我们根据主题知识或观察到的数据分布对暴露进行分类,并将工具性不平等应用于粗化暴露的 MR 模型。在多个二元工具的模拟中,当暴露被分为超过 2 类时,工具性不平等在任何暴露结果效应的大小下都无法检测到偏倚。然而,在单和多个建议工具的模拟中,当暴露被二分类时,在某些情况下,工具性不平等被违反。这些模拟的结果表明,工具性不平等对大于 2 类的暴露粗化引起的偏倚基本上不敏感,并且可以与粗化暴露一起用于评估应用 MR 研究中的所需假设,即使基础暴露确实是连续的。

相似文献

10
A review of instrumental variable estimators for Mendelian randomization.孟德尔随机化中工具变量估计量的综述。
Stat Methods Med Res. 2017 Oct;26(5):2333-2355. doi: 10.1177/0962280215597579. Epub 2015 Aug 17.

本文引用的文献

1
An Automated Approach to Causal Inference in Discrete Settings.离散环境下因果推断的自动化方法。
J Am Stat Assoc. 2024;119(547):1778-1793. doi: 10.1080/01621459.2023.2216909. Epub 2023 Aug 21.
10
On falsification of the binary instrumental variable model.关于二元工具变量模型的证伪
Biometrika. 2017 Mar;104(1):229-236. doi: 10.1093/biomet/asw064. Epub 2017 Jan 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验