Suppr超能文献

用于提高嗜糖假单胞菌BC-G1生产细菌纤维素的生物工艺参数的统计优化。

Statistical optimization of bioprocess parameters for enhanced production of bacterial cellulose from K. saccharivorans BC-G1.

作者信息

Srivastava Samriddh, Mathur Garima

机构信息

Plant and Microbial Biotechnology Centre, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sec-62, Noida, UP, 201309, India.

出版信息

Braz J Microbiol. 2024 Sep;55(3):2199-2210. doi: 10.1007/s42770-024-01397-9. Epub 2024 May 31.

Abstract

Bacterial Cellulose (BC) offers a wide range of applications across various industries, including food, biomedical, and textiles, owing to its distinctive properties. Its unique 3D reticulated network of cellulose nanofibers, imparts excellent mechanical qualities, a high water-holding capacity, and thermal stability. Additionally, it possesses remarkable biocompatibility, biodegradability, high crystallinity, and purity. These attributes have offered significant interest in BC within both academic and industrial sectors. However, BC production is associated with high costs due to the use of expensive growth media and low yields. The study reports the potential of our indigenous isolate, Komagataeibacter saccharivorans BC-G1, as BC producer. Statistical optimization of BC production was carried out using Placket-Burman design and Central composite design, by selecting different parameters. Eight significant factors such as temperature, pH, glucose, yeast, peptone, acetic acid, incubation time and % inoculum were studies using ANOVA-based response surface methodology. Results showed that BC yield (8.5 g/L) with 1.8-fold after optimization of parameters. Maximum cellulose production (8.5 ± 1.8 g/L) was obtained using 2% glucose, 0.3% yeast extract, 0.3% peptone, 0.75% (v/v) acetic acid at pH 7.0 for 10 days of incubation with 4% inoculum at 25 °C under static culture. Main effect graph showed incubation time and acetic acid concentration as the most significant parameters affecting BC production in our study. The physicochemical characterization of produced BC was done using FTIR, XRD and SEM techniques.

摘要

细菌纤维素(BC)因其独特的性质,在包括食品、生物医学和纺织品在内的各个行业都有广泛的应用。其独特的纤维素纳米纤维三维网状网络赋予了优异的机械性能、高持水能力和热稳定性。此外,它还具有显著的生物相容性、生物降解性、高结晶度和纯度。这些特性在学术和工业领域都引起了对BC的极大兴趣。然而,由于使用昂贵的生长培养基和低产量,BC的生产成本较高。该研究报道了我们本土分离的食糖Komagataeibacter saccharivorans BC-G1作为BC生产者的潜力。通过选择不同参数,使用Placket-Burman设计和中心复合设计对BC生产进行了统计优化。使用基于方差分析的响应面方法研究了八个重要因素,如温度、pH值、葡萄糖、酵母、蛋白胨、乙酸、培养时间和接种量百分比。结果表明,参数优化后BC产量提高了1.8倍,达到8.5 g/L。在25°C静态培养下,使用2%葡萄糖、0.3%酵母提取物、0.3%蛋白胨、0.75%(v/v)乙酸,pH值为7.0,接种量为4%,培养10天,可获得最大纤维素产量(8.5±1.8 g/L)。主效应图显示,在我们的研究中,培养时间和乙酸浓度是影响BC生产的最显著参数。使用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和扫描电子显微镜(SEM)技术对所生产的BC进行了物理化学表征。

相似文献

1
Statistical optimization of bioprocess parameters for enhanced production of bacterial cellulose from K. saccharivorans BC-G1.
Braz J Microbiol. 2024 Sep;55(3):2199-2210. doi: 10.1007/s42770-024-01397-9. Epub 2024 May 31.
2
Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes.
Prep Biochem Biotechnol. 2018;48(9):842-852. doi: 10.1080/10826068.2018.1513032. Epub 2018 Oct 10.
3
Statistical optimization and characterization of a biocellulose produced by local Egyptian isolate Komagataeibacter hansenii AS.5.
Int J Biol Macromol. 2020 Feb 1;144:198-207. doi: 10.1016/j.ijbiomac.2019.12.103. Epub 2019 Dec 13.
4
Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
Carbohydr Polym. 2016 Oct 20;151:1068-1072. doi: 10.1016/j.carbpol.2016.06.062. Epub 2016 Jun 16.
6
Production and characterization of bacterial cellulose by Rhizobium sp. isolated from bean root.
Sci Rep. 2024 May 13;14(1):10848. doi: 10.1038/s41598-024-61619-w.
8
Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.
Carbohydr Polym. 2016 Jun 25;144:33-40. doi: 10.1016/j.carbpol.2016.02.025. Epub 2016 Feb 10.
10
Bacterial Cellulose Production from agricultural Residues by two sp. Strains.
Bioengineered. 2022 Apr;13(4):10010-10025. doi: 10.1080/21655979.2022.2062970.

本文引用的文献

1
Evaluation of porous bacterial cellulose produced from foam templating with different additives and its application in 3D cell culture.
Int J Biol Macromol. 2023 Apr 15;234:123680. doi: 10.1016/j.ijbiomac.2023.123680. Epub 2023 Feb 15.
4
Bacterial Cellulose Production from agricultural Residues by two sp. Strains.
Bioengineered. 2022 Apr;13(4):10010-10025. doi: 10.1080/21655979.2022.2062970.
5
Evaluation of detoxified sugarcane bagasse hydrolysate by atmospheric cold plasma for bacterial cellulose production.
Int J Biol Macromol. 2022 Apr 15;204:136-143. doi: 10.1016/j.ijbiomac.2022.01.186. Epub 2022 Feb 1.
6
Bacterial cellulose-based biomaterials: From fabrication to application.
Carbohydr Polym. 2022 Feb 15;278:118995. doi: 10.1016/j.carbpol.2021.118995. Epub 2021 Dec 10.
7
Bacterial cellulose and its potential for biomedical applications.
Biotechnol Adv. 2021 Dec;53:107856. doi: 10.1016/j.biotechadv.2021.107856. Epub 2021 Oct 16.
8
Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering.
Biotechnol J. 2019 Dec;14(12):e1900059. doi: 10.1002/biot.201900059. Epub 2019 Sep 17.
9
In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2018 Jan 1;82:372-383. doi: 10.1016/j.msec.2016.11.121. Epub 2016 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验