Charlesworth Thomas, Yiamsawat Kanyapat, Gao Hui, Rees Gregory J, Williams Charlotte K, Bruce Peter G, Pasta Mauro, Gregory Georgina L
Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
Materials Department, University of Oxford, Oxford, OX1 3PH, UK.
Angew Chem Int Ed Engl. 2024 Aug 12;63(33):e202408246. doi: 10.1002/anie.202408246. Epub 2024 Jul 11.
Improving composite cathode function is key to the success of the solid-state battery. Maximizing attainable cathode capacity and retention requires integrating suitable polymeric binders that retain a sufficiently high ionic conductivity and long-term chemo-mechanical stability of the cathode active material-solid-electrolyte-carbon mixture. Herein, we report block copolymer networks composed of lithium borate polycarbonates and poly(ethylene oxide) that improved the capacity (200 mAh g at 1.75 mA cm) and capacity retention (94 % over 300 cycles) of all-solid-state composite cathodes with nickel-rich LiNiCoMnO cathode active material, LiPSCl solid electrolyte, and carbon. Tetrahedral B(OR)(OH) anions immobilized on the polycarbonate segments provide hydrogen-bonding chain crosslinking and selective Li-counterion conductivity, parameterized by Li-ion transference numbers close to unity (t~0.94). With 90 wt % polycarbonate content and a flexible low glass transition temperature backbone, the single-ion conductors achieved high Li-ion conductivities of 0.2 mS cm at 30 °C. The work should inform future binder design for improving the processability of cathode composites towards commercializing solid-state batteries, and allow use in other cell configurations, such as lithium-sulphur cathode designs.
提高复合阴极功能是固态电池成功的关键。要实现阴极容量和保持率最大化,需要整合合适的聚合物粘合剂,以保持阴极活性材料 - 固体电解质 - 碳混合物足够高的离子电导率和长期的化学机械稳定性。在此,我们报道了由硼酸锂聚碳酸酯和聚环氧乙烷组成的嵌段共聚物网络,其提高了含富镍LiNiCoMnO阴极活性材料、LiPSCl固体电解质和碳的全固态复合阴极的容量(在1.75 mA cm下为200 mAh g)和容量保持率(300次循环后为94%)。固定在聚碳酸酯链段上的四面体B(OR)(OH) 阴离子提供氢键链交联和选择性锂反离子传导,其锂离子迁移数接近1(t~0.94)。具有90 wt%聚碳酸酯含量和柔性低玻璃化转变温度主链的单离子导体在30°C下实现了0.2 mS cm的高锂离子电导率。这项工作应为未来的粘合剂设计提供参考,以提高阴极复合材料的可加工性,推动固态电池商业化,并可用于其他电池配置,如锂硫阴极设计。