Suppr超能文献

含氟粘结剂的替代品:用于高容量固体复合阴极的可回收共聚酯/碳酸盐电解质

Alternatives to fluorinated binders: recyclable copolyester/carbonate electrolytes for high-capacity solid composite cathodes.

作者信息

Yeo Holly, Gregory Georgina L, Gao Hui, Yiamsawat Kanyapat, Rees Gregory J, McGuire Thomas, Pasta Mauro, Bruce Peter G, Williams Charlotte K

机构信息

Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK

Department of Materials, University of Oxford Oxford OX1 3PH UK.

出版信息

Chem Sci. 2024 Jan 17;15(7):2371-2379. doi: 10.1039/d3sc05105f. eCollection 2024 Feb 14.

Abstract

Optimising the composite cathode for next-generation, safe solid-state batteries with inorganic solid electrolytes remains a key challenge towards commercialisation and cell performance. Tackling this issue requires the design of suitable polymer binders for electrode processability and long-term solid-solid interfacial stability. Here, -polyester/carbonates are systematically designed as Li-ion conducting, high-voltage stable binders for cathode composites comprising of single-crystal LiNiMnCoO cathodes, LiPSCl solid electrolyte and carbon nanofibres. Compared to traditional fluorinated polymer binders, improved discharge capacities (186 mA h g) and capacity retention (96.7% over 200 cycles) are achieved. The nature of the new binder electrolytes also enables its separation and complete recycling after use. ABA- and AB-polymeric architectures are compared where the A-blocks are mechanical modifiers, and the B-block facilitates Li-ion transport. This reveals that the conductivity and mechanical properties of the ABA-type are more suited for binder application. Further, catalysed switching between CO/epoxide A-polycarbonate (PC) synthesis and B-poly(carbonate--ester) formation employing caprolactone (CL) and trimethylene carbonate (TMC) identifies an optimal molar mass (50 kg mol) and composition ( 0.35). This polymer electrolyte binder shows impressive oxidative stability (5.2 V), suitable ionic conductivity (2.2 × 10 S cm at 60 °C), and compliant viscoelastic properties for fabrication into high-performance solid composite cathodes. This work presents an attractive route to optimising polymer binder properties using controlled polymerisation strategies combining cyclic monomer (CL, TMC) ring-opening polymerisation and epoxide/CO ring-opening copolymerisation. It should also prompt further examination of polycarbonate/ester-based materials with today's most relevant yet demanding high-voltage cathodes and sensitive sulfide-based solid electrolytes.

摘要

优化用于下一代具有无机固体电解质的安全固态电池的复合阴极,仍然是实现商业化和电池性能的关键挑战。解决这个问题需要设计适合电极加工性和长期固-固界面稳定性的聚合物粘合剂。在这里,聚碳酸酯被系统地设计为锂离子传导、高压稳定的粘合剂,用于由单晶LiNiMnCoO阴极、LiPSCl固体电解质和碳纳米纤维组成的阴极复合材料。与传统的氟化聚合物粘合剂相比,实现了更高的放电容量(186 mA h g)和容量保持率(200次循环后为96.7%)。新型粘合剂电解质的性质还使其在使用后能够分离并完全回收。比较了ABA型和AB型聚合物结构,其中A嵌段是机械改性剂,B嵌段促进锂离子传输。这表明ABA型的导电性和机械性能更适合用作粘合剂。此外,通过使用己内酯(CL)和碳酸三亚甲酯(TMC)催化CO/环氧化物A-聚碳酸酯(PC)合成与B-聚(碳酸酯-酯)形成之间的转换,确定了最佳摩尔质量(50 kg mol)和组成(0.35)。这种聚合物电解质粘合剂表现出令人印象深刻的氧化稳定性(5.2 V)、合适的离子电导率(60℃时为2.2×10 S cm)以及用于制造高性能固体复合阴极的柔顺粘弹性。这项工作提出了一条利用可控聚合策略优化聚合物粘合剂性能的有吸引力的途径,该策略结合了环状单体(CL、TMC)的开环聚合和环氧化物/CO的开环共聚。它还应促使人们进一步研究基于聚碳酸酯/酯的材料与当今最相关但要求苛刻的高压阴极和敏感的硫化物基固体电解质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a2d/10866336/005518e7d70f/d3sc05105f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验