Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2322326121. doi: 10.1073/pnas.2322326121. Epub 2024 May 31.
A key feature of many developmental systems is their ability to self-organize spatial patterns of functionally distinct cell fates. To ensure proper biological function, such patterns must be established reproducibly, by controlling and even harnessing intrinsic and extrinsic fluctuations. While the relevant molecular processes are increasingly well understood, we lack a principled framework to quantify the performance of such stochastic self-organizing systems. To that end, we introduce an information-theoretic measure for self-organized fate specification during embryonic development. We show that the proposed measure assesses the total information content of fate patterns and decomposes it into interpretable contributions corresponding to the positional and correlational information. By optimizing the proposed measure, our framework provides a normative theory for developmental circuits, which we demonstrate on lateral inhibition, cell type proportioning, and reaction-diffusion models of self-organization. This paves a way toward a classification of developmental systems based on a common information-theoretic language, thereby organizing the zoo of implicated chemical and mechanical signaling processes.
许多发育系统的一个关键特征是其自我组织功能上不同的细胞命运的空间模式的能力。为了确保适当的生物学功能,必须通过控制甚至利用内在和外在的波动来可重复地建立这种模式。虽然相关的分子过程越来越被理解,但我们缺乏一个原则性的框架来量化这种随机自组织系统的性能。为此,我们引入了一种信息论度量方法,用于胚胎发育过程中的自我组织命运指定。我们表明,所提出的度量方法评估了命运模式的总信息量,并将其分解为与位置和相关性信息相对应的可解释贡献。通过优化所提出的度量方法,我们的框架为发育电路提供了一个规范理论,我们在侧向抑制、细胞类型比例和自我组织的反应扩散模型上进行了演示。这为基于共同信息论语言的发育系统分类铺平了道路,从而组织了涉及的化学和机械信号过程的动物园。