Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany.
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02143, USA.
Dev Biol. 2020 Apr 1;460(1):2-11. doi: 10.1016/j.ydbio.2019.10.031. Epub 2020 Jan 30.
Embryonic development is a largely self-organizing process, in which the adult body plan arises from a ball of cells with initially nearly equal potency. The reaction-diffusion theory first proposed by Alan Turing states that the initial symmetry in embryos can be broken by the interplay between two diffusible molecules, whose interactions lead to the formation of patterns. The reaction-diffusion theory provides a valuable framework for self-organized pattern formation, but it has been difficult to relate simple two-component models to real biological systems with multiple interacting molecular species. Recent studies have addressed this shortcoming and extended the reaction-diffusion theory to realistic multi-component networks. These efforts have challenged the generality of previous central tenets derived from the analysis of simplified systems and guide the way to a new understanding of self-organizing processes. Here, we discuss the challenges in modeling multi-component reaction-diffusion systems and how these have recently been addressed. We present a synthesis of new pattern formation mechanisms derived from these analyses, and we highlight the significance of reaction-diffusion principles for developmental and synthetic pattern formation.
胚胎发育是一个主要的自组织过程,在这个过程中,成年体的蓝图从一个具有初始几乎相等潜能的细胞球中产生。艾伦·图灵(Alan Turing)首次提出的反应-扩散理论指出,胚胎中的初始对称性可以通过两种可扩散分子的相互作用打破,它们的相互作用导致模式的形成。反应-扩散理论为自组织模式形成提供了一个有价值的框架,但将简单的双组分模型与具有多种相互作用分子物种的真实生物系统联系起来一直很困难。最近的研究解决了这一缺点,并将反应-扩散理论扩展到了现实的多组分网络中。这些努力挑战了从简化系统分析中得出的以前的中心原则的普遍性,并为自组织过程提供了新的理解途径。在这里,我们讨论了对多组分反应-扩散系统建模的挑战,以及最近如何解决这些挑战。我们提出了从这些分析中得出的新的模式形成机制的综合,并强调了反应-扩散原理对发育和合成模式形成的重要性。