National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil.
Department of Pharmacology Science, State University of Campinas (UNICAMP), Campinas, Brazil.
PLoS One. 2024 May 31;19(5):e0303612. doi: 10.1371/journal.pone.0303612. eCollection 2024.
Obesity, a burgeoning global health crisis, has tripled in prevalence over the past 45 years, necessitating innovative research methodologies. Adipocytes, which are responsible for energy storage, play a central role in obesity. However, most studies in this field rely on animal models or adipocyte monolayer cell cultures, which are limited in their ability to fully mimic the complex physiology of a living organism, or pose challenges in terms of cost, time consumption, and ethical considerations. These limitations prompt a shift towards alternative methodologies. In response, here we show a 3D in vitro model utilizing the 3T3-L1 cell line, aimed at faithfully replicating the metabolic intricacies of adipocytes in vivo. Using a workable cell line (3T3-L1), we produced adipocyte spheroids and differentiated them in presence and absence of TNF-α. Through a meticulous proteomic analysis, we compared the molecular profile of our adipose spheroids with that of adipose tissue from lean and obese C57BL/6J mice. This comparison demonstrated the model's efficacy in studying metabolic conditions, with TNF-α treated spheroids displaying a notable resemblance to obese white adipose tissue. Our findings underscore the model's simplicity, reproducibility, and cost-effectiveness, positioning it as a robust tool for authentically mimicking in vitro metabolic features of real adipose tissue. Notably, our model encapsulates key aspects of obesity, including insulin resistance and an obesity profile. This innovative approach has the potential to significantly impact the discovery of novel therapeutic interventions for metabolic syndrome and obesity. By providing a nuanced understanding of metabolic conditions, our 3D model stands as a transformative contribution to in vitro research, offering a pathway for the development of small molecules and biologics targeting these pervasive health issues in humans.
肥胖是一个迅速蔓延的全球健康危机,在过去的 45 年里,其发病率增加了两倍,这就需要创新的研究方法。脂肪细胞负责储存能量,在肥胖中起着核心作用。然而,该领域的大多数研究依赖于动物模型或脂肪细胞单层细胞培养,这些方法在完全模拟生物体复杂生理学方面存在局限性,或者在成本、时间消耗和伦理考虑方面存在挑战。这些局限性促使人们转向替代方法。有鉴于此,我们在此展示了一种使用 3T3-L1 细胞系的 3D 体外模型,旨在忠实地复制体内脂肪细胞的代谢复杂性。我们使用可行的细胞系(3T3-L1)生成脂肪细胞球体,并在存在和不存在 TNF-α 的情况下对其进行分化。通过细致的蛋白质组学分析,我们将我们的脂肪球体的分子图谱与瘦和肥胖 C57BL/6J 小鼠的脂肪组织进行了比较。这种比较表明,该模型在研究代谢条件方面非常有效,用 TNF-α 处理的球体与肥胖的白色脂肪组织非常相似。我们的发现强调了该模型的简单性、可重复性和成本效益,使其成为一种强大的工具,可以真实地模拟真实脂肪组织的体外代谢特征。值得注意的是,我们的模型包含了肥胖的关键方面,包括胰岛素抵抗和肥胖特征。这种创新方法有可能对代谢综合征和肥胖症的新型治疗干预措施的发现产生重大影响。通过提供对代谢条件的细致理解,我们的 3D 模型为体外研究做出了变革性的贡献,为针对这些普遍健康问题的小分子和生物制剂的开发提供了一条途径。