Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Curr Opin Microbiol. 2024 Jun;79:102490. doi: 10.1016/j.mib.2024.102490. Epub 2024 May 30.
In this review, we explore the regulation of septal peptidoglycan (sPG) synthesis in bacterial cell division, a critical process for cell viability and proper morphology. Recent single-molecule imaging studies have revealed the processive movement of the FtsW:bPBP synthase complex along the septum, shedding light on the spatiotemporal dynamics of sPG synthases and their regulators. In diderm bacteria (E. coli and C. crescentus), the movement occurs at two distinct speeds, reflecting active synthesis or inactivity driven by FtsZ-treadmilling. In monoderm bacteria (B. subtilis, S. pneumoniae, and S. aureus), however, these enzymes exhibit only the active sPG-track-coupled processive movement. By comparing the dynamics of sPG synthases in these organisms and that of class-A penicillin-binding proteins in vivo and in vitro, we propose a unifying model for septal cell wall synthesis regulation across species, highlighting the roles of the sPG- and Z-tracks in orchestrating a robust bacterial cell wall constriction process.
在这篇综述中,我们探讨了细菌细胞分裂中隔肽聚糖(sPG)合成的调控,这是细胞存活和形态正常的关键过程。最近的单分子成像研究揭示了 FtsW:bPBP 合成酶复合物沿着隔膜的程序性运动,阐明了 sPG 合成酶及其调控因子的时空动力学。在双菌(大肠杆菌和新月单胞菌)中,该运动以两种不同的速度发生,反映了由 FtsZ 踩踏驱动的活性合成或不活动。然而,在单菌(枯草芽孢杆菌、肺炎链球菌和金黄色葡萄球菌)中,这些酶仅表现出活性 sPG 轨道偶联的程序性运动。通过比较这些生物体中 sPG 合成酶的动力学与体内和体外的 A 类青霉素结合蛋白的动力学,我们提出了一个跨物种的隔细胞壁合成调控的统一模型,强调了 sPG 和 Z 轨道在协调强大的细菌细胞壁收缩过程中的作用。