Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
Nat Commun. 2021 Jan 27;12(1):609. doi: 10.1038/s41467-020-20873-y.
The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ's treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme's diffusion and FtsZ's treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.
FtsZ 蛋白是细菌细胞分裂机制的核心组成部分。它在细胞中部聚合,并招募 30 多种蛋白质组装成一个大分子复合物,以指导细胞壁的收缩。FtsZ 聚合物表现出履带式动力学,推动合成隔膜肽聚糖(sPG)的酶进行连续运动。在这里,我们将理论建模与活细菌细胞的单分子成像相结合,表明 FtsZ 的履带式运动通过布朗棘轮机制驱动 sPG 酶的定向运动。定向运动的连续性取决于 FtsZ 与 sPG 酶之间的结合势,以及酶的扩散和 FtsZ 的履带式运动速度之间的平衡。我们提出,这种相互作用可能为控制活性 sPG 酶的时空分布提供了一种机制,解释了不同细菌中观察到的 FtsZ 履带式运动在调节细胞壁收缩率方面的不同作用。