Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA.
Social Science Research Institute, The Pennsylvania State University, University Park, PA, USA.
Multivariate Behav Res. 2024 Sep-Oct;59(5):934-956. doi: 10.1080/00273171.2024.2347959. Epub 2024 May 31.
Continuous-time modeling using differential equations is a promising technique to model change processes with longitudinal data. Among ways to fit this model, the Latent Differential Structural Equation Modeling (LDSEM) approach defines latent derivative variables within a structural equation modeling (SEM) framework, thereby allowing researchers to leverage advantages of the SEM framework for model building, estimation, inference, and comparison purposes. Still, a few issues remain unresolved, including performance of multilevel variations of the LDSEM under short time lengths (e.g., 14 time points), particularly when coupled multivariate processes and time-varying covariates are involved. Additionally, the possibility of using Bayesian estimation to facilitate the estimation of multilevel LDSEM (M-LDSEM) models with complex and higher-dimensional random effect structures has not been investigated. We present a series of Monte Carlo simulations to evaluate three possible approaches to fitting M-LDSEM, including: frequentist single-level and two-level robust estimators and Bayesian two-level estimator. Our findings suggested that the Bayesian approach outperformed other frequentist approaches. The effects of time-varying covariates are well recovered, and coupling parameters are the least biased especially using higher-order derivative information with the Bayesian estimator. Finally, an empirical example is provided to show the applicability of the approach.
使用微分方程进行连续时间建模是一种很有前途的方法,可以对具有纵向数据的变化过程进行建模。在拟合这种模型的方法中,潜在微分结构方程建模 (Latent Differential Structural Equation Modeling, LDSEM) 方法在结构方程建模 (Structural Equation Modeling, SEM) 框架内定义潜在的导数变量,从而允许研究人员利用 SEM 框架在模型构建、估计、推断和比较方面的优势。然而,仍有一些问题尚未解决,包括在短时间长度(例如 14 个时间点)下,LDSEM 的多层次变化的性能,特别是当涉及到多变量过程和时变协变量时。此外,使用贝叶斯估计来促进具有复杂和高维随机效应结构的多层次 LDSEM (M-LDSEM) 模型的估计的可能性尚未得到研究。我们进行了一系列蒙特卡罗模拟,以评估拟合 M-LDSEM 的三种可能方法,包括:频率论单级和两级稳健估计器和贝叶斯两级估计器。我们的研究结果表明,贝叶斯方法优于其他频率论方法。时变协变量的影响得到了很好的恢复,并且耦合参数的偏差最小,特别是使用贝叶斯估计器的高阶导数信息。最后,提供了一个实证示例来说明该方法的适用性。