Suppr超能文献

多水平潜变量差分结构方程模型与短时间序列和时变协变量:频率派和贝叶斯估计的比较。

Multilevel Latent Differential Structural Equation Model with Short Time Series and Time-Varying Covariates: A Comparison of Frequentist and Bayesian Estimators.

机构信息

Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA.

Social Science Research Institute, The Pennsylvania State University, University Park, PA, USA.

出版信息

Multivariate Behav Res. 2024 Sep-Oct;59(5):934-956. doi: 10.1080/00273171.2024.2347959. Epub 2024 May 31.

Abstract

Continuous-time modeling using differential equations is a promising technique to model change processes with longitudinal data. Among ways to fit this model, the Latent Differential Structural Equation Modeling (LDSEM) approach defines latent derivative variables within a structural equation modeling (SEM) framework, thereby allowing researchers to leverage advantages of the SEM framework for model building, estimation, inference, and comparison purposes. Still, a few issues remain unresolved, including performance of multilevel variations of the LDSEM under short time lengths (e.g., 14 time points), particularly when coupled multivariate processes and time-varying covariates are involved. Additionally, the possibility of using Bayesian estimation to facilitate the estimation of multilevel LDSEM (M-LDSEM) models with complex and higher-dimensional random effect structures has not been investigated. We present a series of Monte Carlo simulations to evaluate three possible approaches to fitting M-LDSEM, including: frequentist single-level and two-level robust estimators and Bayesian two-level estimator. Our findings suggested that the Bayesian approach outperformed other frequentist approaches. The effects of time-varying covariates are well recovered, and coupling parameters are the least biased especially using higher-order derivative information with the Bayesian estimator. Finally, an empirical example is provided to show the applicability of the approach.

摘要

使用微分方程进行连续时间建模是一种很有前途的方法,可以对具有纵向数据的变化过程进行建模。在拟合这种模型的方法中,潜在微分结构方程建模 (Latent Differential Structural Equation Modeling, LDSEM) 方法在结构方程建模 (Structural Equation Modeling, SEM) 框架内定义潜在的导数变量,从而允许研究人员利用 SEM 框架在模型构建、估计、推断和比较方面的优势。然而,仍有一些问题尚未解决,包括在短时间长度(例如 14 个时间点)下,LDSEM 的多层次变化的性能,特别是当涉及到多变量过程和时变协变量时。此外,使用贝叶斯估计来促进具有复杂和高维随机效应结构的多层次 LDSEM (M-LDSEM) 模型的估计的可能性尚未得到研究。我们进行了一系列蒙特卡罗模拟,以评估拟合 M-LDSEM 的三种可能方法,包括:频率论单级和两级稳健估计器和贝叶斯两级估计器。我们的研究结果表明,贝叶斯方法优于其他频率论方法。时变协变量的影响得到了很好的恢复,并且耦合参数的偏差最小,特别是使用贝叶斯估计器的高阶导数信息。最后,提供了一个实证示例来说明该方法的适用性。

相似文献

2
Are Bayesian regularization methods a must for multilevel dynamic latent variables models?
Behav Res Methods. 2025 Jan 22;57(2):71. doi: 10.3758/s13428-024-02589-9.
3
Using structural equation modeling for network meta-analysis.
BMC Med Res Methodol. 2017 Jul 14;17(1):104. doi: 10.1186/s12874-017-0390-9.
7
A multilevel approach to network meta-analysis within a frequentist framework.
Contemp Clin Trials. 2015 May;42:51-9. doi: 10.1016/j.cct.2015.03.005. Epub 2015 Mar 21.
8
Semiparametric multivariate joint model for skewed-longitudinal and survival data: A Bayesian approach.
Stat Med. 2023 Nov 30;42(27):4972-4989. doi: 10.1002/sim.9896. Epub 2023 Sep 5.
9
Some simulations of age-period-cohort analysis applying Bayesian regularization: Conditions for using random walk model.
PLoS One. 2025 Aug 8;20(8):e0329223. doi: 10.1371/journal.pone.0329223. eCollection 2025.

本文引用的文献

1
Fitting Bayesian Stochastic Differential Equation Models with Mixed Effects through a Filtering Approach.
Multivariate Behav Res. 2023 Sep-Oct;58(5):1014-1038. doi: 10.1080/00273171.2023.2171354. Epub 2023 Feb 27.
3
Fitting Multilevel Vector Autoregressive Models in Stan, JAGS, and Mplus.
Struct Equ Modeling. 2022;29(3):452-475. doi: 10.1080/10705511.2021.1911657. Epub 2021 Sep 14.
4
A Note on the Usefulness of Constrained Fourth-Order Latent Differential Equation Models in the Case of Small T.
Psychometrika. 2020 Dec;85(4):1016-1027. doi: 10.1007/s11336-020-09738-x. Epub 2020 Dec 20.
5
Constrained Fourth Order Latent Differential Equation Reduces Parameter Estimation Bias for Damped Linear Oscillator Models.
Struct Equ Modeling. 2020;27(2):202-218. doi: 10.1080/10705511.2019.1641816. Epub 2019 Sep 5.
8
Short- and Long-term Effects of Support Visibility on Support Providers' Negative Affect.
J Gerontol B Psychol Sci Soc Sci. 2021 Feb 17;76(3):461-470. doi: 10.1093/geronb/gbz114.
9
New Recommendations on the Use of R-Squared Differences in Multilevel Model Comparisons.
Multivariate Behav Res. 2020 Jul-Aug;55(4):568-599. doi: 10.1080/00273171.2019.1660605. Epub 2019 Sep 27.
10
dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling.
World Acad Sci Eng Technol. 2019;13(5):302-311. doi: 10.5281/zenodo.3298841.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验