Suppr超能文献

在Stan、JAGS和Mplus中拟合多层向量自回归模型。

Fitting Multilevel Vector Autoregressive Models in Stan, JAGS, and Mplus.

作者信息

Li Yanling, Wood Julie, Ji Linying, Chow Sy-Miin, Oravecz Zita

机构信息

The Pennsylvania State University.

出版信息

Struct Equ Modeling. 2022;29(3):452-475. doi: 10.1080/10705511.2021.1911657. Epub 2021 Sep 14.

Abstract

The influx of intensive longitudinal data creates a pressing need for complex modeling tools that help enrich our understanding of how individuals change over time. Multilevel vector autoregressive (mlVAR) models allow for simultaneous evaluations of reciprocal linkages between dynamic processes and individual differences, and have gained increased recognition in recent years. High-dimensional and other complex variations of mlVAR models, though often computationally intractable in the frequentist framework, can be readily handled using Markov chain Monte Carlo techniques in a Bayesian framework. However, researchers in social science fields may be unfamiliar with ways to capitalize on recent developments in Bayesian software programs. In this paper, we provide step-by-step illustrations and comparisons of options to fit Bayesian mlVAR models using Stan, JAGS and Mplus, supplemented with a Monte Carlo simulation study. An empirical example is used to demonstrate the utility of mlVAR models in studying intra- and inter-individual variations in affective dynamics.

摘要

密集纵向数据的大量涌入,迫切需要复杂的建模工具来帮助我们更深入地理解个体如何随时间变化。多层向量自回归(mlVAR)模型允许同时评估动态过程与个体差异之间的相互联系,近年来受到了越来越多的认可。mlVAR模型的高维及其他复杂变体,尽管在频率主义框架中通常计算上难以处理,但在贝叶斯框架中使用马尔可夫链蒙特卡罗技术可以很容易地处理。然而,社会科学领域的研究人员可能不熟悉利用贝叶斯软件程序最新进展的方法。在本文中,我们提供了使用Stan、JAGS和Mplus拟合贝叶斯mlVAR模型的逐步示例和选项比较,并辅以蒙特卡罗模拟研究。一个实证例子用于证明mlVAR模型在研究情感动态中的个体内和个体间差异方面的效用。

相似文献

1
Fitting Multilevel Vector Autoregressive Models in Stan, JAGS, and Mplus.在Stan、JAGS和Mplus中拟合多层向量自回归模型。
Struct Equ Modeling. 2022;29(3):452-475. doi: 10.1080/10705511.2021.1911657. Epub 2021 Sep 14.
6
A Bayesian Approach to Estimating Reciprocal Effects with the Bivariate STARTS Model.贝叶斯方法在双变量 STARTS 模型中估计互逆效应。
Multivariate Behav Res. 2023 May-Jun;58(3):560-579. doi: 10.1080/00273171.2022.2039585. Epub 2022 Mar 16.
8
Using the Stan Program for Bayesian Item Response Theory.使用斯坦程序进行贝叶斯项目反应理论分析。
Educ Psychol Meas. 2018 Jun;78(3):384-408. doi: 10.1177/0013164417693666. Epub 2017 Feb 1.

引用本文的文献

3
Unsupervised Model Construction in Continuous-Time.连续时间下的无监督模型构建
Struct Equ Modeling. 2025;32(3):377-399. doi: 10.1080/10705511.2024.2429544. Epub 2024 Dec 16.

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
4
A Diagnostic Procedure for Detecting Outliers in Linear State-Space Models.一种用于检测线性状态空间模型中异常值的诊断程序。
Multivariate Behav Res. 2020 Mar-Apr;55(2):231-255. doi: 10.1080/00273171.2019.1627659. Epub 2019 Jul 2.
8
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.横截面和时间序列数据中的高斯图模型。
Multivariate Behav Res. 2018 Jul-Aug;53(4):453-480. doi: 10.1080/00273171.2018.1454823. Epub 2018 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验