Li Yanling, Wood Julie, Ji Linying, Chow Sy-Miin, Oravecz Zita
The Pennsylvania State University.
Struct Equ Modeling. 2022;29(3):452-475. doi: 10.1080/10705511.2021.1911657. Epub 2021 Sep 14.
The influx of intensive longitudinal data creates a pressing need for complex modeling tools that help enrich our understanding of how individuals change over time. Multilevel vector autoregressive (mlVAR) models allow for simultaneous evaluations of reciprocal linkages between dynamic processes and individual differences, and have gained increased recognition in recent years. High-dimensional and other complex variations of mlVAR models, though often computationally intractable in the frequentist framework, can be readily handled using Markov chain Monte Carlo techniques in a Bayesian framework. However, researchers in social science fields may be unfamiliar with ways to capitalize on recent developments in Bayesian software programs. In this paper, we provide step-by-step illustrations and comparisons of options to fit Bayesian mlVAR models using Stan, JAGS and Mplus, supplemented with a Monte Carlo simulation study. An empirical example is used to demonstrate the utility of mlVAR models in studying intra- and inter-individual variations in affective dynamics.
密集纵向数据的大量涌入,迫切需要复杂的建模工具来帮助我们更深入地理解个体如何随时间变化。多层向量自回归(mlVAR)模型允许同时评估动态过程与个体差异之间的相互联系,近年来受到了越来越多的认可。mlVAR模型的高维及其他复杂变体,尽管在频率主义框架中通常计算上难以处理,但在贝叶斯框架中使用马尔可夫链蒙特卡罗技术可以很容易地处理。然而,社会科学领域的研究人员可能不熟悉利用贝叶斯软件程序最新进展的方法。在本文中,我们提供了使用Stan、JAGS和Mplus拟合贝叶斯mlVAR模型的逐步示例和选项比较,并辅以蒙特卡罗模拟研究。一个实证例子用于证明mlVAR模型在研究情感动态中的个体内和个体间差异方面的效用。