Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China.
Cancer Lett. 2024 Jul 28;595:217000. doi: 10.1016/j.canlet.2024.217000. Epub 2024 May 29.
Radiotherapy is one of the predominant treatment modalities for almost all kinds of malignant cancers, including non-small cell lung cancer (NSCLC). Increasing evidence shows that ionizing radiation (IR) induces reactive oxygen species (ROS) leading to lipid peroxidation and subsequently ferroptosis of cancer cells. However, cancer cells evolve multiple mechanisms against ROS biology resulting in resistance to ferroptosis and radiotherapy, of which NRF2 signaling is one of the most studied. In the current research, we identified that microRNA-139 (miR-139) could be a novel radiosensitizer for NSCLC by inhibiting NRF2 signaling. We found that miR-139 possessed great potential as a diagnostic biomarker for NSCLC and multiple other types of cancer. Overexpression of miR-139 increased radiosensitivity of NSCLC cells in vitro and in vivo. MiR-139 directly targeted cJUN and KPNA2 to impair NRF2 signaling resulting in enhanced IR-induced lipid peroxidation and cellular ferroptosis. We proved KPNA2 to be a binding partner of NRF2 that involved in nuclear translocation of NRF2. Moreover, we found that IR induced miR-139 expression through transcriptional factor EGR1. EGR1 bound to the promoter region and transactivated miR-139. Overall, our findings elucidated the effect of EGR1/miR-139/NRF2 in IR-induced ferroptosis of NSCLC cells and provided theoretical support for the potential diagnostic biomarkers and therapeutic targets for the disease.
放射治疗是几乎所有恶性癌症(包括非小细胞肺癌 [NSCLC])的主要治疗方法之一。越来越多的证据表明,电离辐射(IR)会诱导活性氧(ROS)的产生,导致脂质过氧化,进而引发癌细胞的铁死亡。然而,癌细胞会进化出多种机制来对抗 ROS 生物学,从而对铁死亡和放射治疗产生抵抗,其中 NRF2 信号通路是研究最多的机制之一。在当前的研究中,我们发现 microRNA-139(miR-139)可以通过抑制 NRF2 信号通路成为 NSCLC 的新型放射增敏剂。我们发现 miR-139 作为 NSCLC 和多种其他类型癌症的诊断生物标志物具有巨大潜力。miR-139 的过表达增加了 NSCLC 细胞在体外和体内的放射敏感性。miR-139 直接靶向 cJUN 和 KPNA2,削弱 NRF2 信号通路,导致 IR 诱导的脂质过氧化和细胞铁死亡增强。我们证明 KPNA2 是 NRF2 的结合伴侣,参与 NRF2 的核转位。此外,我们发现 IR 通过转录因子 EGR1 诱导 miR-139 的表达。EGR1 结合到启动子区域并转录激活 miR-139。总的来说,我们的研究结果阐明了 EGR1/miR-139/NRF2 在 IR 诱导的 NSCLC 细胞铁死亡中的作用,为该疾病的潜在诊断生物标志物和治疗靶点提供了理论支持。