Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
Anticancer Res. 2024 Jun;44(6):2349-2358. doi: 10.21873/anticanres.17042.
BACKGROUND/AIM: Approximately 50% of melanomas harbor the BRAF V600E mutation and targeted therapies using BRAF inhibitors improve patient outcomes. Nonetheless, resistance to BRAF inhibitors develops rapidly and remains a challenge in melanoma treatment. In this study, we attempted to isolate long noncoding RNAs (lncRNAs) involved in BRAF inhibitor resistance using a comprehensive screening method.
We used a CRISPR-Cas9 synergistic activation mediator (SAM) protein complex in a genome-scale transcriptional activation assay to screen for candidate lncRNA genes related to BRAF inhibitor resistance. Correlation analysis was performed between expression levels of isolated lncRNA genes and IC of dabrafenib in a BRAF-mutated melanoma cell line. Next, online databases were used to construct the lncRNA-miRNA-mRNA regulatory network. Finally, we evaluated the significance of the expression levels of these lncRNAs and mRNAs as biomarkers using clinical specimens.
We isolated three BRAF inhibitor resistance-associated lncRNA genes, namely SNHG16, NDUFV2-AS1, and LINC01502. We constructed a lncRNA-miRNA-mRNA network of 13 nodes consisting of three lncRNAs, six miRNAs, and four mRNAs. The lncRNAs and target mRNAs from each regulatory axis significantly and positively correlated with each other. Finally, Kaplan-Meier analysis showed that higher expression levels of MITF, which was up-regulated by LINC01502, were significantly associated with worse prognosis in BRAF V600E-mutated melanoma.
The identification of these BRAF inhibitor resistance-associated lncRNA genes at the genomic scale and the establishment of the lncRNA-miRNA-mRNA regulatory network provides new insights into the underlying mechanisms of BRAF inhibitor resistance in melanoma.
背景/目的:约 50%的黑色素瘤存在 BRAF V600E 突变,使用 BRAF 抑制剂的靶向治疗可改善患者预后。然而,BRAF 抑制剂的耐药性迅速发展,仍然是黑色素瘤治疗的一个挑战。在这项研究中,我们试图使用全面的筛选方法分离与 BRAF 抑制剂耐药相关的长链非编码 RNA(lncRNA)。
我们使用 CRISPR-Cas9 协同激活介质(SAM)蛋白复合物在全基因组转录激活测定中筛选与 BRAF 抑制剂耐药相关的候选 lncRNA 基因。在 BRAF 突变黑色素瘤细胞系中,对分离的 lncRNA 基因的表达水平与 dabrafenib 的 IC 进行了相关性分析。接下来,使用在线数据库构建了 lncRNA-miRNA-mRNA 调控网络。最后,我们使用临床标本评估了这些 lncRNA 和 mRNA 作为生物标志物的表达水平的重要性。
我们分离出三个与 BRAF 抑制剂耐药相关的 lncRNA 基因,即 SNHG16、NDUFV2-AS1 和 LINC01502。我们构建了一个由三个 lncRNA、六个 miRNA 和四个 mRNA 组成的 lncRNA-miRNA-mRNA 网络。每个调控轴的 lncRNA 和靶 mRNA 彼此之间显著且呈正相关。最后,Kaplan-Meier 分析显示,LINC01502 上调的 MITF 表达水平较高与 BRAF V600E 突变黑色素瘤的预后较差显著相关。
在基因组范围内鉴定这些与 BRAF 抑制剂耐药相关的 lncRNA 基因,并建立 lncRNA-miRNA-mRNA 调控网络,为黑色素瘤中 BRAF 抑制剂耐药的潜在机制提供了新的见解。