Sarma Bidyut Bikash, Grunwaldt Jan-Dierk
Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, 76131 Karlsruhe, Germany.
Institute of Catalysis Research and Technology, KIT, Hermann-von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Chimia (Aarau). 2024 May 29;78(5):288-296. doi: 10.2533/chimia.2024.288.
Solid materials like heterogeneous catalysts are highly dynamic and continuously tend to change when exposed to the reaction environment. To understand the catalyst system under true reaction conditions,operando spectroscopy is the key to unravel small changes, which can ultimately lead to a significant difference in catalytic activity and selectivity. This was also the topic of the 7th International Congress on Operando Spectroscopy in Switzerland in 2023. In this article, we discuss various examples to introduce and demonstrate the importance of this area, including examples from emission control for clean air (e.g. CO oxidation), oxidation catalysis in the chemical industry (e.g. oxidation of isobutene), future power-to-X processes (electrocatalysis, CO2 hydrogenation to methanol), and non-oxidative conversion of methane. All of these processes are equally relevant to the chemical industry. Complementary operando techniques such as X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and Raman spectroscopy were utilized to derive the ultimate structure of the catalyst. The variety of conditions requires distinctly different operando cells that can reach a temperature range of 400-1000 °C and pressures up to 40 bar. The best compromise for both the spectroscopy and the catalytic reaction is needed. As an outlook, we highlight emerging methods such as modulation-excitation spectroscopy (MES) or quick-extended X-ray absorption fine structure (QEXAFS) and X-ray photon in/out techniques, which can provide better sensitivity or extend X-ray based operando studies.
像多相催化剂这样的固体材料具有高度的动态性,在暴露于反应环境时会不断发生变化。为了在真实反应条件下理解催化剂体系,原位光谱是揭示微小变化的关键,这些微小变化最终可能导致催化活性和选择性的显著差异。这也是2023年在瑞士举行的第七届国际原位光谱大会的主题。在本文中,我们讨论了各种例子来介绍和展示该领域的重要性,包括来自清洁空气排放控制(如一氧化碳氧化)、化学工业中的氧化催化(如异丁烯氧化)、未来的电力到X过程(电催化、二氧化碳加氢制甲醇)以及甲烷的非氧化转化等例子。所有这些过程对化学工业都同样重要。利用了诸如X射线吸收光谱(XAS)、X射线衍射(XRD)、漫反射红外傅里叶变换光谱(DRIFTS)和拉曼光谱等互补的原位技术来推导催化剂的最终结构。各种条件需要截然不同的原位反应池,这些反应池能够达到400-1000°C的温度范围和高达40巴的压力。需要在光谱学和催化反应之间找到最佳折衷方案。展望未来,我们重点介绍了新兴方法,如调制激发光谱(MES)或快速扩展X射线吸收精细结构(QEXAFS)以及X射线光子输入/输出技术,这些方法可以提供更好的灵敏度或扩展基于X射线的原位研究。