Bain Alison, Lalemi Lara, Croll Dawes Nathan, Miles Rachael E H, Prophet Alexander M, Wilson Kevin R, Bzdek Bryan R
School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
J Am Chem Soc. 2024 Jun 12;146(23):16028-16038. doi: 10.1021/jacs.4c03041. Epub 2024 Jun 1.
Aerosol droplets are unique microcompartments with relevance to areas as diverse as materials and chemical synthesis, atmospheric chemistry, and cloud formation. Observations of highly accelerated and unusual chemistry taking place in such droplets have challenged our understanding of chemical kinetics in these microscopic systems. Due to their large surface-area-to-volume ratios, interfacial processes can play a dominant role in governing chemical reactivity and other processes in droplets. Quantitative knowledge about droplet surface properties is required to explain reaction mechanisms and product yields. However, our understanding of the compositions and properties of these dynamic, microscopic interfaces is poor compared to our understanding of bulk processes. Here, we measure the dynamic surface tensions of 14-25 μm radius (11-65 pL) droplets containing a strong surfactant (either sodium dodecyl sulfate or octyl-β-D-thioglucopyranoside) using a stroboscopic imaging approach, enabling observation of the dynamics of surfactant partitioning to the droplet-air interface on time scales of 10s to 100s of microseconds after droplet generation. The experimental results are interpreted with a state-of-the-art kinetic model accounting for the unique high surface-area-to-volume ratio inherent to aerosol droplets, providing insights into both the surfactant diffusion and adsorption kinetics as well as the time-dependence of the interfacial surfactant concentration. This study demonstrates that microscopic droplet interfaces can take up to many milliseconds to reach equilibrium. Such time scales should be considered when attempting to explain observations of accelerated chemistry in microcompartments.
气溶胶液滴是独特的微区,与材料和化学合成、大气化学以及云形成等诸多领域相关。在这些液滴中发生的高度加速且异常的化学反应观测结果,对我们在这些微观系统中对化学动力学的理解提出了挑战。由于其高的表面积与体积比,界面过程在控制液滴中的化学反应性和其他过程中可能起主导作用。需要关于液滴表面性质的定量知识来解释反应机理和产物产率。然而,与我们对宏观过程的理解相比,我们对这些动态微观界面的组成和性质的理解较差。在这里,我们使用频闪成像方法测量了含有强表面活性剂(十二烷基硫酸钠或辛基-β-D-硫代葡萄糖苷)的半径为14 - 25μm(11 - 65皮升)的液滴的动态表面张力,从而能够在液滴产生后10微秒到100微秒的时间尺度上观察表面活性剂向液滴 - 空气界面分配的动力学。实验结果用一个考虑了气溶胶液滴固有的独特高表面积与体积比的先进动力学模型进行解释,从而深入了解表面活性剂的扩散和吸附动力学以及界面表面活性剂浓度的时间依赖性。这项研究表明,微观液滴界面可能需要长达数毫秒才能达到平衡。在试图解释微区中加速化学反应的观测结果时,应考虑这样的时间尺度。