UCD Centre for Precision Surgery, University College Dublin, Dublin, Ireland.
IBM Research Europe, Dublin, Ireland.
Langenbecks Arch Surg. 2024 Jun 1;409(1):170. doi: 10.1007/s00423-024-03364-2.
Perioperative decision making for large (> 2 cm) rectal polyps with ambiguous features is complex. The most common intraprocedural assessment is clinician judgement alone while radiological and endoscopic biopsy can provide periprocedural detail. Fluorescence-augmented machine learning (FA-ML) methods may optimise local treatment strategy.
Surgeons of varying grades, all performing colonoscopies independently, were asked to visually judge endoscopic videos of large benign and early-stage malignant (potentially suitable for local excision) rectal lesions on an interactive video platform (Mindstamp) with results compared with and between final pathology, radiology and a novel FA-ML classifier. Statistical analyses of data used Fleiss Multi-rater Kappa scoring, Spearman Coefficient and Frequency tables.
Thirty-two surgeons judged 14 ambiguous polyp videos (7 benign, 7 malignant). In all cancers, initial endoscopic biopsy had yielded false-negative results. Five of each lesion type had had a pre-excision MRI with a 60% false-positive malignancy prediction in benign lesions and a 60% over-staging and 40% equivocal rate in cancers. Average clinical visual cancer judgement accuracy was 49% (with only 'fair' inter-rater agreement), many reporting uncertainty and higher reported decision confidence did not correspond to higher accuracy. This compared to 86% ML accuracy. Size was misjudged visually by a mean of 20% with polyp size underestimated in 4/6 and overestimated in 2/6. Subjective narratives regarding decision-making requested for 7/14 lesions revealed wide rationale variation between participants.
Current available clinical means of ambiguous rectal lesion assessment is suboptimal with wide inter-observer variation. Fluorescence based AI augmentation may advance this field via objective, explainable ML methods.
对于特征不明确的>2cm 直肠息肉,围手术期决策较为复杂。最常见的术中评估是仅凭临床医生的判断,而放射学和内镜活检可以提供围手术期的详细信息。荧光增强机器学习(FA-ML)方法可能优化局部治疗策略。
不同级别的外科医生独立进行结肠镜检查,要求他们在交互式视频平台(Mindstamp)上通过视觉判断大型良性和早期恶性(可能适合局部切除)直肠病变的内镜视频,将结果与最终病理学、放射学和新型 FA-ML 分类器进行比较和分析。使用 Fleiss 多评分者 Kappa 评分、Spearman 系数和频数表对数据进行统计学分析。
32 名外科医生判断了 14 个具有争议性的息肉视频(7 个良性,7 个恶性)。所有癌症的初始内镜活检均产生了假阴性结果。每种病变类型各有 5 例进行了术前 MRI 检查,良性病变的恶性预测假阳性率为 60%,癌症的过度分期率为 60%,可疑率为 40%。平均临床视觉癌症判断准确率为 49%(仅有“一般”的观察者间一致性),许多医生报告存在不确定性,而且较高的报告决策信心并不对应较高的准确性。相比之下,ML 准确率为 86%。息肉大小的目测值平均存在 20%的偏差,6 例中有 4 例低估,2 例高估。对于 7/14 个病变,要求对决策进行主观描述,结果显示参与者之间的决策依据存在广泛差异。
目前对于具有争议性直肠病变的评估,现有的临床手段并不理想,存在广泛的观察者间差异。基于荧光的 AI 增强可能通过客观、可解释的 ML 方法推进该领域的发展。