Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
World J Microbiol Biotechnol. 2024 Jun 1;40(7):227. doi: 10.1007/s11274-024-04034-7.
In yeast metabolic engineering, there is a need for technologies that simultaneously suppress and regulate the expression of multiple genes and improve the production of target chemicals. In this study, we aimed to develop a novel technology that simultaneously suppresses the expression of multiple genes by combining RNA interference with global metabolic engineering strategy. Furthermore, using β-carotene as the target chemical, we attempted to improve its production by using the technology. First, we developed a technology to suppress the expression of the target genes with various strengths using RNA interference. Using this technology, total carotenoid production was successfully improved by suppressing the expression of a single gene out of 10 candidate genes. Then, using this technology, RNA interference strain targeting 10 candidate genes for simultaneous suppression was constructed. The total carotenoid production of the constructed RNA interference strain was 1.7 times compared with the parental strain. In the constructed strain, the expression of eight out of the 10 candidate genes was suppressed. We developed a novel technology that can simultaneously suppress the expression of multiple genes at various intensities and succeeded in improving carotenoid production in yeast. Because this technology can suppress the expression of any gene, even essential genes, using only gene sequence information, it is considered a useful technology that can suppress the formation of by-products during the production of various target chemicals by yeast.
在酵母代谢工程中,需要同时抑制和调控多个基因的表达,并提高目标化学品的产量的技术。在这项研究中,我们旨在开发一种新的技术,通过结合 RNA 干扰和全局代谢工程策略来同时抑制多个基因的表达。此外,我们尝试使用该技术来提高β-胡萝卜素的产量。首先,我们开发了一种使用 RNA 干扰以不同强度抑制目标基因表达的技术。使用该技术,成功地通过抑制 10 个候选基因中的单个基因的表达来提高总类胡萝卜素的产量。然后,使用该技术构建了针对 10 个候选基因同时抑制的 RNA 干扰菌株。与亲本菌株相比,构建的 RNA 干扰菌株的总类胡萝卜素产量提高了 1.7 倍。在构建的菌株中,10 个候选基因中的 8 个基因的表达被抑制。我们开发了一种可以同时以不同强度抑制多个基因表达的新技术,并成功提高了酵母中类胡萝卜素的产量。因为该技术仅使用基因序列信息就可以抑制任何基因的表达,甚至是必需基因的表达,所以它被认为是一种有用的技术,可以通过酵母抑制各种目标化学品生产过程中副产物的形成。