Suppr超能文献

通过基因组编辑方法提高植物和微生物色素产量

Enhanced pigment production from plants and microbes: a genome editing approach.

作者信息

Harshini P, Varghese Ressin, Pachamuthu Kannan, Ramamoorthy Siva

机构信息

School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India.

出版信息

3 Biotech. 2025 May;15(5):129. doi: 10.1007/s13205-025-04290-w. Epub 2025 Apr 16.

Abstract

Pigments are known for their vital roles in the growth and development of plants and microbes. In addition, they are also an imperative component of several industries, including textiles, foods, and pharmaceuticals, owing to their immense colours and therapeutic potential. Conventionally, pigments are obtained from plant resources, and the advent of propagation techniques boosted the massive production. However, it could not meet the booming demand, leading to the incorporation of new genetic engineering tools. This review focuses on the role of various genetic engineering techniques in enhancing pigment production in plants and microorganisms. It also critically analyzes the efficacy and bottlenecks of these techniques in augmenting pigment biosynthesis. Furthermore, the use of microbes as pigment biofactories and the prospects in the field of genome editing to augment pigment synthesis are discussed. The limitations in the existing techniques underline the need for advanced genome editing strategies to broaden the mass production of pigments to meet the surging needs.

摘要

色素因其在植物和微生物生长发育中的重要作用而闻名。此外,由于其丰富的颜色和治疗潜力,它们也是包括纺织、食品和制药在内的多个行业的重要组成部分。传统上,色素是从植物资源中获取的,繁殖技术的出现促进了大规模生产。然而,这无法满足蓬勃发展的需求,导致了新的基因工程工具的引入。本综述重点关注各种基因工程技术在提高植物和微生物色素产量中的作用。它还批判性地分析了这些技术在增强色素生物合成方面的功效和瓶颈。此外,还讨论了将微生物用作色素生物工厂以及基因组编辑领域在增强色素合成方面的前景。现有技术的局限性凸显了需要先进的基因组编辑策略来扩大色素的大规模生产以满足不断增长的需求。

相似文献

1
Enhanced pigment production from plants and microbes: a genome editing approach.
3 Biotech. 2025 May;15(5):129. doi: 10.1007/s13205-025-04290-w. Epub 2025 Apr 16.
2
Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.
Front Genome Ed. 2024 Jun 26;6:1399051. doi: 10.3389/fgeed.2024.1399051. eCollection 2024.
3
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
4
6
"In a State of Flow": A Qualitative Examination of Autistic Adults' Phenomenological Experiences of Task Immersion.
Autism Adulthood. 2024 Sep 16;6(3):362-373. doi: 10.1089/aut.2023.0032. eCollection 2024 Sep.
7
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
10

引用本文的文献

1
Maximizing Biomass Production and Carotenoid-like Pigments Yield in As04 Through Culture Optimization.
Microorganisms. 2025 Jul 2;13(7):1555. doi: 10.3390/microorganisms13071555.

本文引用的文献

2
The role of carotenoids in bone health-A narrative review.
Nutrition. 2024 Mar;119:112306. doi: 10.1016/j.nut.2023.112306. Epub 2023 Dec 1.
3
Predicting CRISPR-Cas12a guide efficiency for targeting using machine learning.
PLoS One. 2023 Oct 17;18(10):e0292924. doi: 10.1371/journal.pone.0292924. eCollection 2023.
4
Genomic consequences associated with Agrobacterium-mediated transformation of plants.
Plant J. 2024 Jan;117(2):342-363. doi: 10.1111/tpj.16496. Epub 2023 Oct 13.
5
Identification of T-DNA structure and insertion site in transgenic crops using targeted capture sequencing.
Front Plant Sci. 2023 Jul 12;14:1156665. doi: 10.3389/fpls.2023.1156665. eCollection 2023.
6
The apocarotenoid production in microbial biofactories: An overview.
J Biotechnol. 2023 Sep 10;374:5-16. doi: 10.1016/j.jbiotec.2023.07.009. Epub 2023 Jul 26.
7
Research progress of engineering microbial cell factories for pigment production.
Biotechnol Adv. 2023 Jul-Aug;65:108150. doi: 10.1016/j.biotechadv.2023.108150. Epub 2023 Apr 10.
8
Improvement of betanin biosynthesis in by metabolic engineering.
Synth Syst Biotechnol. 2022 Nov 12;8(1):54-60. doi: 10.1016/j.synbio.2022.11.002. eCollection 2023 Mar.
9
Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds.
aBIOTECH. 2021 May 18;2(3):191-214. doi: 10.1007/s42994-021-00046-1. eCollection 2021 Sep.
10
Efficient production of anthocyanins in by introducing anthocyanin transporter and knocking out endogenous degrading enzymes.
Front Bioeng Biotechnol. 2022 Aug 19;10:899182. doi: 10.3389/fbioe.2022.899182. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验