Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA.
J Biol Chem. 2024 Jul;300(7):107427. doi: 10.1016/j.jbc.2024.107427. Epub 2024 May 31.
Salmonella enterica serovar Typhimurium melibiose permease (MelB) is a prototype of the major facilitator superfamily (MFS) transporters, which play important roles in human health and diseases. MelB catalyzed the symport of galactosides with Na, Li, or H but prefers the coupling with Na. Previously, we determined the structures of the inward- and outward-facing conformation of MelB and the molecular recognition for galactoside and Na. However, the molecular mechanisms for H- and Na-coupled symport remain poorly understood. In this study, we solved two x-ray crystal structures of MelB, the cation-binding site mutants D59C at an unliganded apo-state and D55C at a ligand-bound state, and both structures display the outward-facing conformations virtually identical as published. We determined the energetic contributions of three major Na-binding residues for the selection of Na and H by free energy simulations. Transport assays showed that the D55C mutant converted MelB to a solely H-coupled symporter, and together with the free-energy perturbation calculation, Asp59 is affirmed to be the sole protonation site of MelB. Unexpectedly, the H-coupled melibiose transport exhibited poor activities at greater bulky ΔpH and better activities at reversal ΔpH, supporting the novel theory of transmembrane-electrostatically localized protons and the associated membrane potential as the primary driving force for the H-coupled symport mediated by MelB. This integrated study of crystal structure, bioenergetics, and free energy simulations, demonstrated the distinct roles of the major binding residues in the cation-binding pocket of MelB.
鼠伤寒沙门氏菌 Typhimurium 蜜二糖透性酶(MelB)是主要易化子超家族(MFS)转运蛋白的原型,在人类健康和疾病中发挥着重要作用。MelB 催化半乳糖苷与 Na、Li 或 H 的协同转运,但更喜欢与 Na 的偶联。先前,我们确定了 MelB 的内向和外向构象的结构以及半乳糖苷和 Na 的分子识别。然而,H 和 Na 偶联协同转运的分子机制仍知之甚少。在这项研究中,我们解决了 MelB 的两个 X 射线晶体结构,即未配体 apo 状态下的阳离子结合位点突变体 D59C 和配体结合状态下的 D55C,这两个结构都显示出几乎与已发表结构相同的外向构象。我们通过自由能模拟确定了三个主要 Na 结合残基对 Na 和 H 选择的能量贡献。转运实验表明,D55C 突变体将 MelB 转化为仅 H 偶联的协同转运体,并且与自由能扰动计算一起,Asp59 被确认为 MelB 的唯一质子化位点。出乎意料的是,H 偶联的蜜二糖转运在更大的体积 ΔpH 下表现出较差的活性,而在反转 ΔpH 下表现出更好的活性,支持了跨膜静电局部化质子的新理论以及相关的膜电位作为由 MelB 介导的 H 偶联协同转运的主要驱动力。这项晶体结构、生物能量学和自由能模拟的综合研究表明,主要结合残基在 MelB 的阳离子结合口袋中具有不同的作用。