文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的显微镜载玻片上利什曼原虫内期检测模型:远程医疗的新方法。

A deep learning-based model for detecting Leishmania amastigotes in microscopic slides: a new approach to telemedicine.

机构信息

Department of Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.

出版信息

BMC Infect Dis. 2024 Jun 1;24(1):551. doi: 10.1186/s12879-024-09428-4.


DOI:10.1186/s12879-024-09428-4
PMID:38824500
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11144338/
Abstract

BACKGROUND: Leishmaniasis, an illness caused by protozoa, accounts for a substantial number of human fatalities globally, thereby emerging as one of the most fatal parasitic diseases. The conventional methods employed for detecting the Leishmania parasite through microscopy are not only time-consuming but also susceptible to errors. Therefore, the main objective of this study is to develop a model based on deep learning, a subfield of artificial intelligence, that could facilitate automated diagnosis of leishmaniasis. METHODS: In this research, we introduce LeishFuNet, a deep learning framework designed for detecting Leishmania parasites in microscopic images. To enhance the performance of our model through same-domain transfer learning, we initially train four distinct models: VGG19, ResNet50, MobileNetV2, and DenseNet 169 on a dataset related to another infectious disease, COVID-19. These trained models are then utilized as new pre-trained models and fine-tuned on a set of 292 self-collected high-resolution microscopic images, consisting of 138 positive cases and 154 negative cases. The final prediction is generated through the fusion of information analyzed by these pre-trained models. Grad-CAM, an explainable artificial intelligence technique, is implemented to demonstrate the model's interpretability. RESULTS: The final results of utilizing our model for detecting amastigotes in microscopic images are as follows: accuracy of 98.95 1.4%, specificity of 98 2.67%, sensitivity of 100%, precision of 97.91 2.77%, F1-score of 98.92 1.43%, and Area Under Receiver Operating Characteristic Curve of 99 1.33. CONCLUSION: The newly devised system is precise, swift, user-friendly, and economical, thus indicating the potential of deep learning as a substitute for the prevailing leishmanial diagnostic techniques.

摘要

背景:利什曼病是一种由原生动物引起的疾病,在全球范围内导致了大量的人类死亡,因此成为最致命的寄生虫病之一。传统的通过显微镜检测利什曼原虫的方法不仅耗时,而且容易出错。因此,本研究的主要目标是开发一种基于深度学习的模型,作为人工智能的一个分支,可以实现利什曼病的自动诊断。

方法:在这项研究中,我们引入了 LeishFuNet,这是一种用于在显微镜图像中检测利什曼原虫的深度学习框架。为了通过同领域迁移学习提高模型的性能,我们最初在与另一种传染病 COVID-19 相关的数据集上训练了四个不同的模型:VGG19、ResNet50、MobileNetV2 和 DenseNet 169。这些训练好的模型随后被用作新的预训练模型,并在一组 292 张自我收集的高分辨率显微镜图像上进行微调,其中包括 138 个阳性病例和 154 个阴性病例。最终的预测是通过这些预训练模型分析的信息融合产生的。我们还实施了可解释人工智能技术 Grad-CAM,以展示模型的可解释性。

结果:我们的模型用于检测显微镜图像中的无鞭毛体的最终结果如下:准确率为 98.95 1.4%,特异性为 98 2.67%,灵敏度为 100%,精度为 97.91 2.77%,F1 得分为 98.92 1.43%,以及受试者工作特征曲线下面积为 99 1.33。

结论:新设计的系统精确、快速、用户友好且经济实惠,这表明深度学习有可能替代现有的利什曼病诊断技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/aea303dd1419/12879_2024_9428_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/dfa3400075f1/12879_2024_9428_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/1ffeee6a9921/12879_2024_9428_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/2303dfa6ebf6/12879_2024_9428_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/3b581fb3a482/12879_2024_9428_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/05dee90a0c00/12879_2024_9428_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/97bb37f7245b/12879_2024_9428_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/aea303dd1419/12879_2024_9428_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/dfa3400075f1/12879_2024_9428_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/1ffeee6a9921/12879_2024_9428_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/2303dfa6ebf6/12879_2024_9428_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/3b581fb3a482/12879_2024_9428_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/05dee90a0c00/12879_2024_9428_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/97bb37f7245b/12879_2024_9428_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/11144338/aea303dd1419/12879_2024_9428_Fig7_HTML.jpg

相似文献

[1]
A deep learning-based model for detecting Leishmania amastigotes in microscopic slides: a new approach to telemedicine.

BMC Infect Dis. 2024-6-1

[2]
A machine learning-based system for detecting leishmaniasis in microscopic images.

BMC Infect Dis. 2022-1-12

[3]
DeepLeish: a deep learning based support system for the detection of Leishmaniasis parasite from Giemsa-stained microscope images.

BMC Med Imaging. 2024-6-18

[4]
Assessment of Deep Learning Models for Cutaneous Leishmania Parasite Diagnosis Using Microscopic Images.

Diagnostics (Basel). 2023-12-20

[5]
Detection of COVID-19 Using Transfer Learning and Grad-CAM Visualization on Indigenously Collected X-ray Dataset.

Sensors (Basel). 2021-8-29

[6]
Medical Specialty Recommendations by an Artificial Intelligence Chatbot on a Smartphone: Development and Deployment.

J Med Internet Res. 2021-5-6

[7]
Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning.

Med Image Anal. 2020-7-21

[8]
Enhancing brain tumor detection in MRI images through explainable AI using Grad-CAM with Resnet 50.

BMC Med Imaging. 2024-5-11

[9]
Enhancing parasitic organism detection in microscopy images through deep learning and fine-tuned optimizer.

Sci Rep. 2024-3-8

[10]
Interpretable Differential Diagnosis of Non-COVID Viral Pneumonia, Lung Opacity and COVID-19 Using Tuned Transfer Learning and Explainable AI.

Healthcare (Basel). 2023-1-31

引用本文的文献

[1]
Human-Validated Neural Networks for Precise Amastigote Categorization and Quantification to Accelerate Drug Discovery in Leishmaniasis.

ACS Omega. 2024-12-24

[2]
Enhanced Detection of Leishmania Parasites in Microscopic Images Using Machine Learning Models.

Sensors (Basel). 2024-12-21

本文引用的文献

[1]
Potential diagnostic application of a novel deep learning- based approach for COVID-19.

Sci Rep. 2024-1-2

[2]
Domain Adaptation and Feature Fusion for the Detection of Abnormalities in X-Ray Forearm Images.

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[3]
Deep Transfer Learning with Enhanced Feature Fusion for Detection of Abnormalities in X-ray Images.

Cancers (Basel). 2023-8-7

[4]
Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011-2022).

Comput Methods Programs Biomed. 2022-11

[5]
Leishmaniasis and Chagas disease: Is there hope in nanotechnology to fight neglected tropical diseases?

Front Cell Infect Microbiol. 2022

[6]
The effect of conditional cash transfers on the control of neglected tropical disease: a systematic review.

Lancet Glob Health. 2022-5

[7]
Tissue Specific Dual RNA-Seq Defines Host-Parasite Interplay in Murine Visceral Leishmaniasis Caused by Leishmania donovani and Leishmania infantum.

Microbiol Spectr. 2022-4-27

[8]
Global burden and trends of neglected tropical diseases from 1990 to 2019.

J Travel Med. 2022-5-31

[9]
A machine learning-based system for detecting leishmaniasis in microscopic images.

BMC Infect Dis. 2022-1-12

[10]
Convolutional Neural Networks for Chagas' Parasite Detection in Histopathological Images.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索