Department of Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.
BMC Infect Dis. 2024 Jun 1;24(1):551. doi: 10.1186/s12879-024-09428-4.
BACKGROUND: Leishmaniasis, an illness caused by protozoa, accounts for a substantial number of human fatalities globally, thereby emerging as one of the most fatal parasitic diseases. The conventional methods employed for detecting the Leishmania parasite through microscopy are not only time-consuming but also susceptible to errors. Therefore, the main objective of this study is to develop a model based on deep learning, a subfield of artificial intelligence, that could facilitate automated diagnosis of leishmaniasis. METHODS: In this research, we introduce LeishFuNet, a deep learning framework designed for detecting Leishmania parasites in microscopic images. To enhance the performance of our model through same-domain transfer learning, we initially train four distinct models: VGG19, ResNet50, MobileNetV2, and DenseNet 169 on a dataset related to another infectious disease, COVID-19. These trained models are then utilized as new pre-trained models and fine-tuned on a set of 292 self-collected high-resolution microscopic images, consisting of 138 positive cases and 154 negative cases. The final prediction is generated through the fusion of information analyzed by these pre-trained models. Grad-CAM, an explainable artificial intelligence technique, is implemented to demonstrate the model's interpretability. RESULTS: The final results of utilizing our model for detecting amastigotes in microscopic images are as follows: accuracy of 98.95 1.4%, specificity of 98 2.67%, sensitivity of 100%, precision of 97.91 2.77%, F1-score of 98.92 1.43%, and Area Under Receiver Operating Characteristic Curve of 99 1.33. CONCLUSION: The newly devised system is precise, swift, user-friendly, and economical, thus indicating the potential of deep learning as a substitute for the prevailing leishmanial diagnostic techniques.
背景:利什曼病是一种由原生动物引起的疾病,在全球范围内导致了大量的人类死亡,因此成为最致命的寄生虫病之一。传统的通过显微镜检测利什曼原虫的方法不仅耗时,而且容易出错。因此,本研究的主要目标是开发一种基于深度学习的模型,作为人工智能的一个分支,可以实现利什曼病的自动诊断。
方法:在这项研究中,我们引入了 LeishFuNet,这是一种用于在显微镜图像中检测利什曼原虫的深度学习框架。为了通过同领域迁移学习提高模型的性能,我们最初在与另一种传染病 COVID-19 相关的数据集上训练了四个不同的模型:VGG19、ResNet50、MobileNetV2 和 DenseNet 169。这些训练好的模型随后被用作新的预训练模型,并在一组 292 张自我收集的高分辨率显微镜图像上进行微调,其中包括 138 个阳性病例和 154 个阴性病例。最终的预测是通过这些预训练模型分析的信息融合产生的。我们还实施了可解释人工智能技术 Grad-CAM,以展示模型的可解释性。
结果:我们的模型用于检测显微镜图像中的无鞭毛体的最终结果如下:准确率为 98.95 1.4%,特异性为 98 2.67%,灵敏度为 100%,精度为 97.91 2.77%,F1 得分为 98.92 1.43%,以及受试者工作特征曲线下面积为 99 1.33。
结论:新设计的系统精确、快速、用户友好且经济实惠,这表明深度学习有可能替代现有的利什曼病诊断技术。
BMC Infect Dis. 2022-1-12
Diagnostics (Basel). 2023-12-20
Med Image Anal. 2020-7-21
BMC Med Imaging. 2024-5-11
Annu Int Conf IEEE Eng Med Biol Soc. 2023-7
Cancers (Basel). 2023-8-7
Comput Methods Programs Biomed. 2022-11
Front Cell Infect Microbiol. 2022
J Travel Med. 2022-5-31
BMC Infect Dis. 2022-1-12
Annu Int Conf IEEE Eng Med Biol Soc. 2021-11