Department of Medicine, Montréal Heart Institute, Université de Montréal, Montréal, Canada; Mila-Québec AI Institute, Montréal, Canada; Heartwise (heartwise.ai), Montréal Heart Institute, Montréal, Canada.
Division of Cardiovascular Medicine, Stanford University School of Medicine, California, USA.
Can J Cardiol. 2024 Oct;40(10):1774-1787. doi: 10.1016/j.cjca.2024.05.024. Epub 2024 May 31.
Large language models (LLMs) have emerged as powerful tools in artificial intelligence, demonstrating remarkable capabilities in natural language processing and generation. In this article, we explore the potential applications of LLMs in enhancing cardiovascular care and research. We discuss how LLMs can be used to simplify complex medical information, improve patient-physician communication, and automate tasks such as summarising medical articles and extracting key information. In addition, we highlight the role of LLMs in categorising and analysing unstructured data, such as medical notes and test results, which could revolutionise data handling and interpretation in cardiovascular research. However, we also emphasise the limitations and challenges associated with LLMs, including potential biases, reasoning opacity, and the need for rigourous validation in medical contexts. This review provides a practical guide for cardiovascular professionals to understand and harness the power of LLMs while navigating their limitations. We conclude by discussing the future directions and implications of LLMs in transforming cardiovascular care and research.
大型语言模型 (LLMs) 在人工智能领域崭露头角,展现出在自然语言处理和生成方面的卓越能力。本文探讨了 LLM 在增强心血管护理和研究方面的潜在应用。我们讨论了如何使用 LLM 简化复杂的医学信息、改善医患沟通,以及实现如医学文章摘要和关键信息提取等任务的自动化。此外,我们强调了 LLM 在分类和分析非结构化数据(如医疗记录和测试结果)方面的作用,这可能彻底改变心血管研究中的数据处理和解释方式。然而,我们也强调了与 LLM 相关的局限性和挑战,包括潜在的偏差、推理不透明性,以及在医学背景下进行严格验证的必要性。本综述为心血管专业人员提供了实用指南,帮助他们理解和利用 LLM 的力量,同时应对其局限性。最后,我们讨论了 LLM 在改变心血管护理和研究方面的未来方向和影响。