State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
Ophthalmology, Mayo Clinic Health System, Eau Claire, Wisconsin, USA.
Asia Pac J Ophthalmol (Phila). 2024 Jul-Aug;13(4):100085. doi: 10.1016/j.apjo.2024.100085. Epub 2024 Jul 25.
Large language models (LLMs), a natural language processing technology based on deep learning, are currently in the spotlight. These models closely mimic natural language comprehension and generation. Their evolution has undergone several waves of innovation similar to convolutional neural networks. The transformer architecture advancement in generative artificial intelligence marks a monumental leap beyond early-stage pattern recognition via supervised learning. With the expansion of parameters and training data (terabytes), LLMs unveil remarkable human interactivity, encompassing capabilities such as memory retention and comprehension. These advances make LLMs particularly well-suited for roles in healthcare communication between medical practitioners and patients. In this comprehensive review, we discuss the trajectory of LLMs and their potential implications for clinicians and patients. For clinicians, LLMs can be used for automated medical documentation, and given better inputs and extensive validation, LLMs may be able to autonomously diagnose and treat in the future. For patient care, LLMs can be used for triage suggestions, summarization of medical documents, explanation of a patient's condition, and customizing patient education materials tailored to their comprehension level. The limitations of LLMs and possible solutions for real-world use are also presented. Given the rapid advancements in this area, this review attempts to briefly cover many roles that LLMs may play in the ophthalmic space, with a focus on improving the quality of healthcare delivery.
大型语言模型(LLMs)是一种基于深度学习的自然语言处理技术,目前备受关注。这些模型可以很好地模拟自然语言的理解和生成。它们的发展经历了类似于卷积神经网络的几波创新浪潮。在生成式人工智能中,转换器架构的进步标志着通过有监督学习进行早期模式识别的巨大飞跃。随着参数和训练数据(TB 级)的扩展,LLMs 展现出了惊人的人机交互能力,包括记忆保留和理解等能力。这些进步使得 LLM 非常适合在医疗保健领域中充当医疗从业者和患者之间的沟通媒介。在这篇全面的综述中,我们讨论了 LLM 的发展轨迹及其对临床医生和患者的潜在影响。对于临床医生来说,LLM 可用于自动医疗文档记录,并且通过更好的输入和广泛的验证,LLM 将来可能能够自主诊断和治疗。对于患者护理,LLM 可用于分诊建议、医疗文件摘要、解释患者病情以及根据患者的理解水平定制患者教育材料。本文还介绍了 LLM 的局限性和可能的解决方案,以实现实际应用。鉴于该领域的快速发展,本文简要综述了 LLM 在眼科领域可能发挥的许多作用,重点是提高医疗服务质量。