Suppr超能文献

模拟肿瘤机械力对脑实质中淋巴系统网络的影响。

Simulating the Impact of Tumor Mechanical Forces on Glymphatic Networks in the Brain Parenchyma.

作者信息

Siri Saeed, Burchett Alice, Datta Meenal

出版信息

bioRxiv. 2024 May 21:2024.05.18.594808. doi: 10.1101/2024.05.18.594808.

Abstract

BACKGROUND

The brain glymphatic system is currently being explored in the context of many neurological disorders and diseases, including traumatic brain injury, Alzheimer's disease, and ischemic stroke. However, little is known about the impact of brain tumors on glymphatic function. Mechanical forces generated during tumor development and growth may be responsible for compromised glymphatic transport pathways, reducing waste clearance and cerebrospinal fluid (CSF) transport in the brain parenchyma. One such force is solid stress, i.e., growth-induced forces from cell hyperproliferation and excess matrix deposition. Because there are no prior studies assessing the impact of tumor-derived solid stress on glymphatic system structure and performance in the brain parenchyma, this study serves to fill an important gap in the field.

METHODS

We adapted a previously developed Electrical Analog Model using MATLAB Simulink for glymphatic transport coupled with Finite Element Analysis for tumor mechanical stresses and strains in COMSOL. This allowed simulation of the impact of tumor mechanical force generation on fluid transport within brain parenchymal glymphatic units - which include paravascular spaces, astrocytic networks, interstitial spaces, and capillary basement membranes. We conducted a parametric analysis to compare the contributions of tumor size, tumor proximity, and ratio of glymphatic subunits to the stress and strain experienced by the glymphatic unit and corresponding reduction in flow rate of CSF.

RESULTS

Mechanical stresses intensify with proximity to the tumor and increasing tumor size, highlighting the vulnerability of nearby glymphatic units to tumor-derived forces. Our stress and strain profiles reveal compressive deformation of these surrounding glymphatics and demonstrate that varying the relative contributions of astrocytes vs. interstitial spaces impact the resulting glymphatic structure significantly under tumor mechanical forces. Increased tumor size and proximity caused increased stress and strain across all glymphatic subunits, as does decreased astrocyte composition. Indeed, our model reveals an inverse correlation between extent of astrocyte contribution to the composition of the glymphatic unit and the resulting mechanical stress. This increased mechanical strain across the glymphatic unit decreases the venous efflux rate of CSF, dependent on the degree of strain and the specific glymphatic subunit of interest. For example, a 20% mechanical strain on capillary basement membranes does not significantly decrease venous efflux (2% decrease in flow rates), while the same magnitude of strain on astrocyte networks and interstitial spaces decreases efflux flow rates by 7% and 22%, respectively.

CONCLUSION

Our simulations reveal that solid stress from brain tumors directly reduces glymphatic fluid transport, independently from biochemical effects from cancer cells. Understanding these pathophysiological implications is crucial for developing targeted interventions aimed at restoring effective waste clearance mechanisms in the brain.This study opens potential avenues for future experimental research in brain tumor-related glymphatic dysfunction.

摘要

背景

目前正在多种神经系统疾病的背景下探索脑类淋巴系统,包括创伤性脑损伤、阿尔茨海默病和缺血性中风。然而,关于脑肿瘤对类淋巴功能的影响知之甚少。肿瘤发生和生长过程中产生的机械力可能导致类淋巴运输途径受损,减少脑实质中的废物清除和脑脊液(CSF)运输。其中一种力是固体应力,即细胞过度增殖和过多基质沉积产生的生长诱导力。由于此前没有研究评估肿瘤衍生的固体应力对脑实质中类淋巴系统结构和性能的影响,本研究旨在填补该领域的一个重要空白。

方法

我们采用了先前开发的基于MATLAB Simulink的电模拟模型来模拟类淋巴运输,并结合COMSOL中的有限元分析来计算肿瘤的机械应力和应变。这使得能够模拟肿瘤机械力产生对脑实质类淋巴单元内液体运输的影响,这些单元包括血管周围间隙、星形胶质细胞网络、间质间隙和毛细血管基底膜。我们进行了参数分析,以比较肿瘤大小、肿瘤距离以及类淋巴亚单位比例对类淋巴单元所经历的应力和应变以及相应的脑脊液流速降低的影响。

结果

机械应力随着靠近肿瘤以及肿瘤大小的增加而增强,突出了附近类淋巴单元对肿瘤衍生力的脆弱性。我们的应力和应变分布图显示了这些周围类淋巴管的压缩变形,并表明在肿瘤机械力作用下,改变星形胶质细胞与间质间隙的相对贡献会显著影响类淋巴结构。肿瘤大小和距离的增加导致所有类淋巴亚单位的应力和应变增加,星形胶质细胞组成减少也会如此。实际上,我们的模型揭示了星形胶质细胞对类淋巴单元组成的贡献程度与所产生的机械应力之间呈负相关。类淋巴单元上这种增加的机械应变会降低脑脊液的静脉流出率,这取决于应变程度和所关注的特定类淋巴亚单位。例如,表示脑血管基底膜上20%的机械应变不会显著降低静脉流出量(流速降低2%),而星形胶质细胞网络和间质间隙上相同程度的应变分别会使流出流速降低7%和22%。

结论

我们的模拟结果表明,脑肿瘤产生的固体应力直接降低类淋巴液运输,与癌细胞的生化作用无关。了解这些病理生理影响对于开发旨在恢复脑中有效废物清除机制的靶向干预措施至关重要。本研究为未来关于脑肿瘤相关类淋巴功能障碍的实验研究开辟了潜在途径。

相似文献

6
A clinical primer for the glymphatic system.淋巴系统临床入门指南。
Brain. 2022 Apr 29;145(3):843-857. doi: 10.1093/brain/awab428.
10
The glymphatic pathway in neurological disorders.神经疾病中的糖酵解途径。
Lancet Neurol. 2018 Nov;17(11):1016-1024. doi: 10.1016/S1474-4422(18)30318-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验