利用同步钙成像和功能磁共振成像对小鼠大脑进行多模态识别。

Multimodal identification of the mouse brain using simultaneous Ca imaging and fMRI.

作者信息

Mandino Francesca, Horien Corey, Shen Xilin, Desrosiers-Grégoire Gabriel, Luo Wendy, Markicevic Marija, Todd Constable R, Papademetris Xenophon, Chakravarty Mallar M, Betzel Richard F, Lake Evelyn M R

出版信息

bioRxiv. 2025 Feb 18:2024.05.24.594620. doi: 10.1101/2024.05.24.594620.

Abstract

Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome-based identification to be successful and explored various features of these data.

摘要

基于神经成像个体差异在指导各种异质性神经疾病的个性化治疗方面的潜力,临床和认知神经科学家对其颇感兴趣。尽管有诸多优势,但该领域的主力技术——血氧水平依赖性功能磁共振成像(BOLD-fMRI)存在时空分辨率低、特异性差以及易受噪声和伪信号干扰的问题。为了更好地理解BOLD-fMRI数据中的个体差异,我们可以使用动物模型,在这些模型中可以同时进行fMRI以及更具侵入性的互补对比研究。在此,我们在小鼠中同时应用宽场荧光钙成像和BOLD-fMRI,采用源自人类fMRI文献的基于连接组的识别框架来探究个体差异。这种方法可从整个皮层产生高时空分辨率的细胞类型特异性信号(此处来自胶质细胞、兴奋性神经元以及抑制性中间神经元)。我们发现基于小鼠多模态连接组的识别是成功的,并探索了这些数据的各种特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索