Ehrlich Alison, Xu Angelina A, Luminari Sofia, Kidd Simon, Treiber Christoph D, Russo Jordan, Blau Justin
Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA.
Centre for Neural Circuits and Behaviour, University of Oxford, UK.
bioRxiv. 2024 May 22:2024.05.22.595372. doi: 10.1101/2024.05.22.595372.
Knowing how neural circuits change with neuronal plasticity and differ between individuals is important to fully understand behavior. Connectomes are typically assembled using electron microscopy, but this is low throughput and impractical for analyzing plasticity or mutations. Here, we modified the -Tango genetic circuit-tracing technique to identify neurons synaptically downstream of s-LNv clock neurons, which show 24hr plasticity rhythms. s-LNv target neurons were labeled specifically in adult flies using a nuclear reporter gene, which facilitated their purification and then single cell sequencing. We call this Tango-seq, and it allows transcriptomic data - and thus cell identity - to be overlayed on top of anatomical data. We found that s-LNvs preferentially make synaptic connections with a subset of the CNMa+ DN1p clock neurons, and that these are likely plastic connections. We also identified synaptic connections between s-LNvs and mushroom body Kenyon cells. Tango-seq should be a useful addition to the connectomics toolkit.
了解神经回路如何随神经元可塑性变化以及个体之间的差异,对于全面理解行为至关重要。连接体通常使用电子显微镜组装,但这是低通量的,对于分析可塑性或突变而言并不实用。在这里,我们改进了-Tango遗传回路追踪技术,以识别s-LNv时钟神经元突触下游的神经元,这些神经元表现出24小时可塑性节律。使用核报告基因在成年果蝇中特异性标记s-LNv靶神经元,这有助于它们的纯化,然后进行单细胞测序。我们将此称为Tango-seq,它允许将转录组数据——进而细胞身份——叠加在解剖学数据之上。我们发现,s-LNv优先与CNMa+DN1p时钟神经元的一个子集建立突触连接,并且这些可能是可塑性连接。我们还确定了s-LNv与蘑菇体肯扬细胞之间的突触连接。Tango-seq应该是连接组学工具包中一个有用的补充。