Suppr超能文献

用光在果蝇生物钟中重新配置多振荡器网络。

Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock.

机构信息

Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.

Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77845-3258, USA.

出版信息

Curr Biol. 2018 Jul 9;28(13):2007-2017.e4. doi: 10.1016/j.cub.2018.04.064. Epub 2018 Jun 14.

Abstract

The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system.

摘要

驱动昼夜节律运动活动的大脑时钟依赖于多振荡器神经元网络。除了使时钟与日夜周期同步外,光还重新格式化时钟驱动的日常活动模式。光照条件的变化如何改变不同振荡器对重塑日常活动模式的贡献在很大程度上仍然未知。我们在果蝇中的数据表明,光通过两种不同的模式来重新调整振荡器之间的相互作用。我们表明,早晨的 s-LNv > DN1p 电路以串联方式工作,而两个平行的傍晚电路由 LNds 和其他 DN1ps 贡献。根据光的背景,s-LNv 神经元中的主节拍器在有光的情况下与其受奴役的振荡器-LNd 交换,或者在没有光的情况下与 DN1p 交换,以始终与最具影响力的相位确定振荡器相连。当进一步增加光照时,光激活的 LNd 节拍器通过与 s-LNvs 解耦而变得独立。光对耦合的校准是分层的,不受时钟影响的网络相互作用,其中光上调 s-LNvs 中 PDF 神经肽的表达,抑制 DN1p 傍晚振荡器的行为输出。因此,光改变了振荡器之间的耦合和时钟独立的输出门控,从而实现了网络的灵活性。很可能,果蝇大脑生物钟网络中的光诱导变化可以揭示在任何神经元多振荡器系统中适应变化的环境线索的一般原则。

相似文献

7
Neural Network Interactions Modulate CRY-Dependent Photoresponses in .神经网络相互作用调节. 中的 CRY 依赖性光响应。
J Neurosci. 2018 Jul 4;38(27):6161-6171. doi: 10.1523/JNEUROSCI.2259-17.2018. Epub 2018 Jun 6.

引用本文的文献

6
A subclass of evening cells promotes the switch from arousal to sleep at dusk.一类黄昏细胞促进了从觉醒到睡眠的转换。
Curr Biol. 2024 May 20;34(10):2186-2199.e3. doi: 10.1016/j.cub.2024.04.039. Epub 2024 May 8.

本文引用的文献

1
Clock network in Drosophila.果蝇中的生物钟网络。
Curr Opin Insect Sci. 2015 Feb;7:65-70. doi: 10.1016/j.cois.2014.11.003. Epub 2014 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验