Suppr超能文献

多样性远交系小鼠的细胞类型特异性网络分析确定了可能与人类骨密度全基因组关联研究(GWAS)关联相关的基因。

Cell type-specific network analysis in Diversity Outbred mice identifies genes potentially responsible for human bone mineral density GWAS associations.

作者信息

Dillard Luke J, Calabrese Gina M, Mesner Larry D, Farber Charles R

机构信息

Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908.

Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22908.

出版信息

bioRxiv. 2024 May 21:2024.05.20.594981. doi: 10.1101/2024.05.20.594981.

Abstract

Genome-wide association studies (GWASs) have identified many sources of genetic variation associated with bone mineral density (BMD), a clinical predictor of fracture risk and osteoporosis. Aside from the identification of causal genes, other difficult challenges to informing GWAS include characterizing the roles of predicted causal genes in disease and providing additional functional context, such as the cell type predictions or biological pathways in which causal genes operate. Leveraging single-cell transcriptomics (scRNA-seq) can assist in informing BMD GWAS by linking disease-associated variants to genes and providing a cell type context for which these causal genes drive disease. Here, we use large-scale scRNA-seq data from bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs) from Diversity Outbred (DO) mice to generate cell type-specific networks and contextualize BMD GWAS-implicated genes. Using trajectories inferred from the scRNA-seq data, we identify networks enriched with genes that exhibit the most dynamic changes in expression across trajectories. We discover 21 network driver genes, which are likely to be causal for human BMD GWAS associations that colocalize with expression/splicing quantitative trait loci (eQTL/sQTL). These driver genes, including and along with their associated networks, are predicted to be novel regulators of BMD via their roles in the differentiation of mesenchymal lineage cells. In this work, we showcase the use of single-cell transcriptomics from mouse bone-relevant cells to inform human BMD GWAS and prioritize genetic targets with potential causal roles in the development of osteoporosis.

摘要

全基因组关联研究(GWAS)已经确定了许多与骨密度(BMD)相关的遗传变异来源,骨密度是骨折风险和骨质疏松症的临床预测指标。除了确定因果基因外,为GWAS提供信息的其他艰巨挑战还包括描述预测的因果基因在疾病中的作用,并提供额外的功能背景,例如因果基因发挥作用的细胞类型预测或生物途径。利用单细胞转录组学(scRNA-seq)可以通过将疾病相关变异与基因联系起来,并为这些因果基因驱动疾病的细胞类型提供背景信息,从而有助于为BMD GWAS提供信息。在这里,我们使用来自多样性远交(DO)小鼠在成骨条件下培养的骨髓来源基质细胞(BMSC-OBs)的大规模scRNA-seq数据,来生成细胞类型特异性网络,并将与BMD GWAS相关的基因进行情境化分析。利用从scRNA-seq数据推断出的轨迹,我们确定了富含在整个轨迹中表现出最动态表达变化的基因的网络。我们发现了21个网络驱动基因,它们可能是与表达/剪接数量性状位点(eQTL/sQTL)共定位的人类BMD GWAS关联的因果基因。这些驱动基因,包括 和 以及它们相关的网络,预计通过它们在间充质谱系细胞分化中的作用成为BMD的新型调节因子。在这项工作中,我们展示了使用来自小鼠骨相关细胞的单细胞转录组学来为人类BMD GWAS提供信息,并确定在骨质疏松症发展中具有潜在因果作用的遗传靶点的优先级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e14/11142079/dd5f7508250c/nihpp-2024.05.20.594981v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验