Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia.
Department of Pediatrics, University of Melbourne, Melbourne, VIC 3010, Australia.
Bioinformatics. 2022 Oct 14;38(20):4720-4726. doi: 10.1093/bioinformatics/btac582.
MOTIVATION: Single cell RNA-Sequencing (scRNA-seq) has rapidly gained popularity over the last few years for profiling the transcriptomes of thousands to millions of single cells. This technology is now being used to analyse experiments with complex designs including biological replication. One question that can be asked from single cell experiments, which has been difficult to directly address with bulk RNA-seq data, is whether the cell type proportions are different between two or more experimental conditions. As well as gene expression changes, the relative depletion or enrichment of a particular cell type can be the functional consequence of disease or treatment. However, cell type proportion estimates from scRNA-seq data are variable and statistical methods that can correctly account for different sources of variability are needed to confidently identify statistically significant shifts in cell type composition between experimental conditions. RESULTS: We have developed propeller, a robust and flexible method that leverages biological replication to find statistically significant differences in cell type proportions between groups. Using simulated cell type proportions data, we show that propeller performs well under a variety of scenarios. We applied propeller to test for significant changes in cell type proportions related to human heart development, ageing and COVID-19 disease severity. AVAILABILITY AND IMPLEMENTATION: The propeller method is publicly available in the open source speckle R package (https://github.com/phipsonlab/speckle). All the analysis code for the article is available at the associated analysis website: https://phipsonlab.github.io/propeller-paper-analysis/. The speckle package, analysis scripts and datasets have been deposited at https://doi.org/10.5281/zenodo.7009042. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
动机:单细胞 RNA 测序 (scRNA-seq) 在过去几年中因其能够对数千到数百万个单细胞的转录组进行分析而迅速流行起来。这项技术现在正被用于分析具有复杂设计的实验,包括生物复制。单细胞实验可以提出一个问题,即与批量 RNA-seq 数据相比,两个或更多实验条件之间的细胞类型比例是否不同。除了基因表达变化之外,特定细胞类型的相对耗竭或富集可能是疾病或治疗的功能后果。然而,scRNA-seq 数据中的细胞类型比例估计值是可变的,需要能够正确解释不同来源的变异性的统计方法,以自信地识别实验条件之间细胞类型组成的统计学显著变化。
结果:我们开发了 propeller,这是一种强大且灵活的方法,利用生物学复制来发现组间细胞类型比例的统计学显著差异。使用模拟的细胞类型比例数据,我们表明 propeller 在各种情况下都表现良好。我们应用 propeller 来测试与人类心脏发育、衰老和 COVID-19 疾病严重程度相关的细胞类型比例的显著变化。
可用性和实现:propeller 方法在开源 speckle R 包(https://github.com/phipsonlab/speckle)中公开可用。文章的所有分析代码都可在关联的分析网站上获得:https://phipsonlab.github.io/propeller-paper-analysis/。speckle 包、分析脚本和数据集已存储在 https://doi.org/10.5281/zenodo.7009042。
补充信息:补充数据可在生物信息学在线获得。
Bioinformatics. 2022-10-14
Bioinformatics. 2023-1-1
Bioinformatics. 2019-12-15
Bioinformatics. 2019-7-15
Bioinformatics. 2022-6-13
Diabetol Metab Syndr. 2025-8-14
Proc Natl Acad Sci U S A. 2021-8-17
Circulation. 2021-4-20
Genome Biol. 2019-12-19
F1000Res. 2019-10-14
Gigascience. 2019-9-1