文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

螺旋桨:单细胞数据中细胞类型比例差异的测试。

propeller: testing for differences in cell type proportions in single cell data.

机构信息

Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia.

Department of Pediatrics, University of Melbourne, Melbourne, VIC 3010, Australia.

出版信息

Bioinformatics. 2022 Oct 14;38(20):4720-4726. doi: 10.1093/bioinformatics/btac582.


DOI:10.1093/bioinformatics/btac582
PMID:36005887
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9563678/
Abstract

MOTIVATION: Single cell RNA-Sequencing (scRNA-seq) has rapidly gained popularity over the last few years for profiling the transcriptomes of thousands to millions of single cells. This technology is now being used to analyse experiments with complex designs including biological replication. One question that can be asked from single cell experiments, which has been difficult to directly address with bulk RNA-seq data, is whether the cell type proportions are different between two or more experimental conditions. As well as gene expression changes, the relative depletion or enrichment of a particular cell type can be the functional consequence of disease or treatment. However, cell type proportion estimates from scRNA-seq data are variable and statistical methods that can correctly account for different sources of variability are needed to confidently identify statistically significant shifts in cell type composition between experimental conditions. RESULTS: We have developed propeller, a robust and flexible method that leverages biological replication to find statistically significant differences in cell type proportions between groups. Using simulated cell type proportions data, we show that propeller performs well under a variety of scenarios. We applied propeller to test for significant changes in cell type proportions related to human heart development, ageing and COVID-19 disease severity. AVAILABILITY AND IMPLEMENTATION: The propeller method is publicly available in the open source speckle R package (https://github.com/phipsonlab/speckle). All the analysis code for the article is available at the associated analysis website: https://phipsonlab.github.io/propeller-paper-analysis/. The speckle package, analysis scripts and datasets have been deposited at https://doi.org/10.5281/zenodo.7009042. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:单细胞 RNA 测序 (scRNA-seq) 在过去几年中因其能够对数千到数百万个单细胞的转录组进行分析而迅速流行起来。这项技术现在正被用于分析具有复杂设计的实验,包括生物复制。单细胞实验可以提出一个问题,即与批量 RNA-seq 数据相比,两个或更多实验条件之间的细胞类型比例是否不同。除了基因表达变化之外,特定细胞类型的相对耗竭或富集可能是疾病或治疗的功能后果。然而,scRNA-seq 数据中的细胞类型比例估计值是可变的,需要能够正确解释不同来源的变异性的统计方法,以自信地识别实验条件之间细胞类型组成的统计学显著变化。

结果:我们开发了 propeller,这是一种强大且灵活的方法,利用生物学复制来发现组间细胞类型比例的统计学显著差异。使用模拟的细胞类型比例数据,我们表明 propeller 在各种情况下都表现良好。我们应用 propeller 来测试与人类心脏发育、衰老和 COVID-19 疾病严重程度相关的细胞类型比例的显著变化。

可用性和实现:propeller 方法在开源 speckle R 包(https://github.com/phipsonlab/speckle)中公开可用。文章的所有分析代码都可在关联的分析网站上获得:https://phipsonlab.github.io/propeller-paper-analysis/。speckle 包、分析脚本和数据集已存储在 https://doi.org/10.5281/zenodo.7009042。

补充信息:补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167b/9563678/76c9803017f3/btac582f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167b/9563678/13154abb59b7/btac582f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167b/9563678/542253f00c9d/btac582f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167b/9563678/76c9803017f3/btac582f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167b/9563678/13154abb59b7/btac582f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167b/9563678/542253f00c9d/btac582f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167b/9563678/76c9803017f3/btac582f3.jpg

相似文献

[1]
propeller: testing for differences in cell type proportions in single cell data.

Bioinformatics. 2022-10-14

[2]
scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.

Bioinformatics. 2021-7-12

[3]
Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge.

Bioinformatics. 2022-9-30

[4]
A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.

Bioinformatics. 2022-10-31

[5]
scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer.

Bioinformatics. 2021-11-18

[6]
Vaeda computationally annotates doublets in single-cell RNA sequencing data.

Bioinformatics. 2023-1-1

[7]
bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.

Bioinformatics. 2020-2-15

[8]
DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data.

Bioinformatics. 2019-12-15

[9]
A statistical simulator scDesign for rational scRNA-seq experimental design.

Bioinformatics. 2019-7-15

[10]
Imputing dropouts for single-cell RNA sequencing based on multi-objective optimization.

Bioinformatics. 2022-6-13

引用本文的文献

[1]
An exploratory single-cell analysis of peripheral blood mononuclear cells from vedolizumab-treated Crohn's disease patients identifies response-associated differences among the plasmacytoid dendritic cells and classical monocytes.

Front Immunol. 2025-8-15

[2]
Multi-omic identification of perineurial hyperplasia and lipid-associated nerve macrophages in human polyneuropathies.

Nat Commun. 2025-8-23

[3]
A spatial single-cell atlas of the claustro-insular region uncovers key regulators of neuronal identity and excitability.

Nat Commun. 2025-8-22

[4]
Deep phenotyping of a modified diabetic cardiomyopathy mouse model which reflects clinical disease progression.

Diabetol Metab Syndr. 2025-8-14

[5]
Single-cell and bulk transcriptome profiling reveals RNA-binding protein regulatory programs in cervical cancer.

Sci Rep. 2025-8-12

[6]
Comprehensive tumor-immune profiling reveals mediators of paradoxical immune sensitivity in sarcomatoid renal cell carcinoma.

Cancer Cell. 2025-7-23

[7]
Cell-type-informed genotyping of mosaic focal epilepsies reveals cell-autonomous and non-cell-autonomous disease-associated transcriptional programs.

Proc Natl Acad Sci U S A. 2025-7-22

[8]
Cancer systems immunology reveals myeloid-T cell interactions and B cell activation mediate response to checkpoint inhibition in metastatic breast cancer.

bioRxiv. 2025-6-13

[9]
A multi-adjuvant personal neoantigen vaccine generates potent immunity in melanoma.

Cell. 2025-7-9

[10]
Early developmental origins of cortical disorders modeled in human neural stem cells.

Nat Commun. 2025-7-9

本文引用的文献

[1]
Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis.

Proc Natl Acad Sci U S A. 2021-8-17

[2]
Sex-Specific Control of Human Heart Maturation by the Progesterone Receptor.

Circulation. 2021-4-20

[3]
COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas.

Cell. 2021-4-1

[4]
Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human Naive T Cells.

Cell Rep. 2021-1-5

[5]
muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data.

Nat Commun. 2020-11-30

[6]
Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.

Nat Med. 2020-5-12

[7]
Genotype-free demultiplexing of pooled single-cell RNA-seq.

Genome Biol. 2019-12-19

[8]
Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference.

Genome Biol. 2019-12-13

[9]
Creating and sharing reproducible research code the workflowr way.

F1000Res. 2019-10-14

[10]
A field guide for the compositional analysis of any-omics data.

Gigascience. 2019-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索