Varas Nicolas, Grabowski Rachel, Jarosinski Mark A, Tai Ningwen, Herzog Raimund I, Ismail-Beigi Faramarz, Yang Yanwu, Cherrington Alan D, Weiss Michael A
bioRxiv. 2024 May 21:2024.05.20.594997. doi: 10.1101/2024.05.20.594997.
The risk of hypoglycemia and its serious medical sequelae restrict insulin replacement therapy for diabetes mellitus. Such adverse clinical impact has motivated development of diverse glucose-responsive technologies, including algorithm-controlled insulin pumps linked to continuous glucose monitors ("closed-loop systems") and glucose-sensing ("smart") insulins. These technologies seek to optimize glycemic control while minimizing hypoglycemic risk. Here, we describe an alternative approach that exploits an endogenous glucose-dependent switch in hepatic physiology: preferential insulin signaling (under hyperglycemic conditions) preferential counter-regulatory glucagon signaling (during hypoglycemia). Motivated by prior reports of glucagon-insulin co-infusion, we designed and tested an ultra-stable glucagon-insulin fusion protein whose relative hormonal activities were calibrated by respective modifications; physical stability was concurrently augmented to facilitate formulation, enhance shelf life and expand access. An N-terminal glucagon moiety was stabilized by an α-helix-compatible Lys -Glu lactam bridge; A C-terminal insulin moiety was stabilized as a single chain with foreshortened C domain. Studies demonstrated (a) resistance to fibrillation on prolonged agitation at 37 °C and (b) dual hormonal signaling activities with appropriate balance. Glucodynamic responses were monitored in rats relative to control fusion proteins lacking one or the other hormonal activity, and continuous intravenous infusion emulated basal subcutaneous therapy. Whereas efficacy in mitigating hyperglycemia was unaffected by the glucagon moiety, the fusion protein enhanced endogenous glucose production under hypoglycemic conditions. Together, these findings provide proof of principle toward a basal glucose-responsive insulin biotechnology of striking simplicity. The fusion protein's augmented stability promises to circumvent the costly cold chain presently constraining global insulin access.
The therapeutic goal of insulin replacement therapy in diabetes is normalization of blood-glucose concentration, which prevents or delays long-term complications. A critical barrier is posed by recurrent hypoglycemic events that results in short- and long-term morbidities. An innovative approach envisions co-injection of glucagon (a counter-regulatory hormone) to exploit a glycemia-dependent hepatic switch in relative hormone responsiveness. To provide an enabling technology, we describe an ultra-stable fusion protein containing insulin- and glucagon moieties. Proof of principle was obtained in rats. A single-chain insulin moiety provides glycemic control whereas a lactam-stabilized glucagon extension mitigates hypoglycemia. This dual-hormone fusion protein promises to provide a basal formulation with reduced risk of hypoglycemia. Resistance to fibrillation may circumvent the cold chain required for global access.
低血糖风险及其严重的医学后果限制了糖尿病的胰岛素替代疗法。这种不利的临床影响推动了多种葡萄糖感应技术的发展,包括与连续血糖监测仪相连的算法控制胰岛素泵(“闭环系统”)和葡萄糖感应(“智能”)胰岛素。这些技术旨在优化血糖控制,同时将低血糖风险降至最低。在此,我们描述了一种利用肝脏生理学中内源性葡萄糖依赖开关的替代方法:高血糖条件下优先进行胰岛素信号传导,低血糖期间优先进行反调节胰高血糖素信号传导。受先前胰高血糖素 - 胰岛素联合输注报告的启发,我们设计并测试了一种超稳定的胰高血糖素 - 胰岛素融合蛋白,其相对激素活性通过各自的修饰进行校准;同时增强了物理稳定性,以利于制剂制备、延长保质期并扩大可及性。N 端的胰高血糖素部分通过与α - 螺旋兼容的赖氨酸 - 谷氨酸内酰胺桥得到稳定;C 端的胰岛素部分作为具有缩短 C 结构域的单链得到稳定。研究表明:(a)在 37°C 长时间搅拌下抗纤维蛋白原形成,(b)具有适当平衡的双重激素信号活性。相对于缺乏一种或另一种激素活性的对照融合蛋白,在大鼠中监测了糖动力学反应,并通过持续静脉输注模拟基础皮下治疗。虽然减轻高血糖的功效不受胰高血糖素部分的影响,但融合蛋白在低血糖条件下增强了内源性葡萄糖生成。总之,这些发现为一种极其简单的基础葡萄糖感应胰岛素生物技术提供了原理证明。融合蛋白增强的稳定性有望规避目前限制全球胰岛素可及性的昂贵冷链。
糖尿病胰岛素替代疗法的治疗目标是使血糖浓度正常化,以预防或延迟长期并发症。反复发生的低血糖事件构成了一个关键障碍,会导致短期和长期发病。一种创新方法设想联合注射胰高血糖素(一种反调节激素),以利用相对激素反应性中依赖血糖的肝脏开关。为了提供一种可行的技术,我们描述了一种含有胰岛素和胰高血糖素部分的超稳定融合蛋白。在大鼠中获得了原理证明。单链胰岛素部分提供血糖控制,而内酰胺稳定的胰高血糖素延伸部分减轻低血糖。这种双激素融合蛋白有望提供一种低血糖风险降低的基础制剂。抗纤维蛋白原形成可能规避全球可及所需的冷链。