Suppr超能文献

伯努利双纽线映射量词:脑电图情感识别的创新措施。

Lemniscate of Bernoulli's map quantifiers: innovative measures for EEG emotion recognition.

作者信息

Goshvarpour Atefeh, Goshvarpour Ateke

机构信息

Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran.

Department of Biomedical Engineering, Imam Reza International University, Mashhad, Razavi Khorasan Iran.

出版信息

Cogn Neurodyn. 2024 Jun;18(3):1061-1077. doi: 10.1007/s11571-023-09968-6. Epub 2023 Apr 23.

Abstract

Thanks to the advent of affective computing, designing an automatic human emotion recognition system for clinical and non-clinical applications has attracted the attention of many researchers. Currently, multi-channel electroencephalogram (EEG)-based emotion recognition is a fundamental but challenging issue. This experiment envisioned developing a new scheme for automated EEG affect recognition. An innovative nonlinear feature engineering approach was presented based on Lemniscate of Bernoulli's Map (LBM), which belongs to the family of chaotic maps, in line with the EEG's nonlinear nature. As far as the authors know, LBM has not been utilized for biological signal analysis. Next, the map was characterized using several graphical indices. The feature vector was imposed on the feature selection algorithm while evaluating the role of the feature vector dimension on emotion recognition rates. Finally, the efficiency of the features on emotion recognition was appraised using two conventional classifiers and validated using the Database for Emotion Analysis using Physiological signals (DEAP) and SJTU Emotion EEG Dataset-IV (SEED-IV) benchmark databases. The experimental results showed a maximum accuracy of 92.16% for DEAP and 90.7% for SEED-IV. Achieving higher recognition rates compared to the state-of-art EEG emotion recognition systems suggest the proposed method based on LBM could have potential both in characterizing bio-signal dynamics and detecting affect-deficit disorders.

摘要

得益于情感计算的出现,设计一个用于临床和非临床应用的自动人类情感识别系统已吸引了众多研究人员的关注。当前,基于多通道脑电图(EEG)的情感识别是一个基本但具有挑战性的问题。本实验设想开发一种用于自动EEG情感识别的新方案。基于伯努利双纽线映射(LBM)提出了一种创新的非线性特征工程方法,LBM属于混沌映射家族,符合EEG的非线性特性。据作者所知,LBM尚未用于生物信号分析。接下来,使用几个图形指标对该映射进行表征。在评估特征向量维度对情感识别率的作用时,将特征向量应用于特征选择算法。最后,使用两个传统分类器评估这些特征在情感识别上的效率,并使用生理信号情感分析数据库(DEAP)和上海交通大学情感EEG数据集-IV(SEED-IV)基准数据库进行验证。实验结果表明,DEAP的最高准确率为92.16%,SEED-IV的最高准确率为90.7%。与现有EEG情感识别系统相比实现了更高的识别率,这表明所提出的基于LBM的方法在表征生物信号动态和检测情感缺陷障碍方面都具有潜力。

相似文献

1
Lemniscate of Bernoulli's map quantifiers: innovative measures for EEG emotion recognition.
Cogn Neurodyn. 2024 Jun;18(3):1061-1077. doi: 10.1007/s11571-023-09968-6. Epub 2023 Apr 23.
2
Innovative Poincare's plot asymmetry descriptors for EEG emotion recognition.
Cogn Neurodyn. 2022 Jun;16(3):545-559. doi: 10.1007/s11571-021-09735-5. Epub 2021 Oct 26.
4
Emotion recognition based on microstate analysis from temporal and spatial patterns of electroencephalogram.
Front Neurosci. 2024 Mar 14;18:1355512. doi: 10.3389/fnins.2024.1355512. eCollection 2024.
5
Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features.
Front Comput Neurosci. 2019 Aug 20;13:53. doi: 10.3389/fncom.2019.00053. eCollection 2019.
7
Emotion Classification Based on Transformer and CNN for EEG Spatial-Temporal Feature Learning.
Brain Sci. 2024 Mar 11;14(3):268. doi: 10.3390/brainsci14030268.
8
Multi-Feature Input Deep Forest for EEG-Based Emotion Recognition.
Front Neurorobot. 2021 Jan 11;14:617531. doi: 10.3389/fnbot.2020.617531. eCollection 2020.
10
Automated Feature Extraction on AsMap for Emotion Classification Using EEG.
Sensors (Basel). 2022 Mar 18;22(6):2346. doi: 10.3390/s22062346.

引用本文的文献

2
PSPN: Pseudo-Siamese Pyramid Network for multimodal emotion analysis.
Cogn Neurodyn. 2024 Oct;18(5):2883-2896. doi: 10.1007/s11571-024-10123-y. Epub 2024 May 28.
3
Improved EEG-based emotion recognition through information enhancement in connectivity feature map.
Sci Rep. 2023 Aug 23;13(1):13804. doi: 10.1038/s41598-023-40786-2.

本文引用的文献

2
Innovative Poincare's plot asymmetry descriptors for EEG emotion recognition.
Cogn Neurodyn. 2022 Jun;16(3):545-559. doi: 10.1007/s11571-021-09735-5. Epub 2021 Oct 26.
3
Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition.
J Neurosci Methods. 2022 Jul 1;376:109624. doi: 10.1016/j.jneumeth.2022.109624. Epub 2022 May 16.
5
EEG-based human emotion recognition using entropy as a feature extraction measure.
Brain Inform. 2021 Oct 5;8(1):20. doi: 10.1186/s40708-021-00141-5.
6
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder.
Front Syst Neurosci. 2020 Sep 2;14:43. doi: 10.3389/fnsys.2020.00043. eCollection 2020.
7
Time-Frequency Representation and Convolutional Neural Network-Based Emotion Recognition.
IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):2901-2909. doi: 10.1109/TNNLS.2020.3008938. Epub 2021 Jul 6.
8
Emotion recognition with convolutional neural network and EEG-based EFDMs.
Neuropsychologia. 2020 Sep;146:107506. doi: 10.1016/j.neuropsychologia.2020.107506. Epub 2020 Jun 1.
9
Odor-induced emotion recognition based on average frequency band division of EEG signals.
J Neurosci Methods. 2020 Jan 21;334:108599. doi: 10.1016/j.jneumeth.2020.108599.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验