Suppr超能文献

基于Transformer和卷积神经网络的脑电图时空特征学习情感分类

Emotion Classification Based on Transformer and CNN for EEG Spatial-Temporal Feature Learning.

作者信息

Yao Xiuzhen, Li Tianwen, Ding Peng, Wang Fan, Zhao Lei, Gong Anmin, Nan Wenya, Fu Yunfa

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.

Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China.

出版信息

Brain Sci. 2024 Mar 11;14(3):268. doi: 10.3390/brainsci14030268.

Abstract

OBJECTIVES

The temporal and spatial information of electroencephalogram (EEG) signals is crucial for recognizing features in emotion classification models, but it excessively relies on manual feature extraction. The transformer model has the capability of performing automatic feature extraction; however, its potential has not been fully explored in the classification of emotion-related EEG signals. To address these challenges, the present study proposes a novel model based on transformer and convolutional neural networks (TCNN) for EEG spatial-temporal (EEG ST) feature learning to automatic emotion classification.

METHODS

The proposed EEG ST-TCNN model utilizes position encoding (PE) and multi-head attention to perceive channel positions and timing information in EEG signals. Two parallel transformer encoders in the model are used to extract spatial and temporal features from emotion-related EEG signals, and a CNN is used to aggregate the EEG's spatial and temporal features, which are subsequently classified using Softmax.

RESULTS

The proposed EEG ST-TCNN model achieved an accuracy of 96.67% on the SEED dataset and accuracies of 95.73%, 96.95%, and 96.34% for the arousal-valence, arousal, and valence dimensions, respectively, for the DEAP dataset.

CONCLUSIONS

The results demonstrate the effectiveness of the proposed ST-TCNN model, with superior performance in emotion classification compared to recent relevant studies.

SIGNIFICANCE

The proposed EEG ST-TCNN model has the potential to be used for EEG-based automatic emotion recognition.

摘要

目标

脑电图(EEG)信号的时空信息对于情感分类模型中的特征识别至关重要,但它过度依赖人工特征提取。变压器模型具有自动特征提取的能力;然而,其在与情感相关的EEG信号分类中的潜力尚未得到充分探索。为应对这些挑战,本研究提出了一种基于变压器和卷积神经网络(TCNN)的新型模型,用于EEG时空(EEG ST)特征学习以实现自动情感分类。

方法

所提出的EEG ST-TCNN模型利用位置编码(PE)和多头注意力来感知EEG信号中的通道位置和时间信息。模型中的两个并行变压器编码器用于从与情感相关的EEG信号中提取空间和时间特征,并且使用卷积神经网络来聚合EEG的空间和时间特征,随后使用Softmax进行分类。

结果

所提出的EEG ST-TCNN模型在SEED数据集上的准确率达到了96.67%,在DEAP数据集上,对于唤醒-效价、唤醒和效价维度的准确率分别为95.73%、96.95%和96.34%。

结论

结果证明了所提出的ST-TCNN模型的有效性,与最近的相关研究相比,在情感分类方面具有卓越的性能。

意义

所提出的EEG ST-TCNN模型有潜力用于基于EEG的自动情感识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ab/10969195/16aeb92cee5d/brainsci-14-00268-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验