Suppr超能文献

认知与精神障碍的诊断:一种基于脑电图信号的谱-时空分析和局部图结构的新方法。

Diagnosis of Cognitive and Mental Disorders: A New Approach Based on Spectral-Spatiotemporal Analysis and Local Graph Structures of Electroencephalogram Signals.

作者信息

Sanati Fahandari Arezoo, Moshiryan Sara, Goshvarpour Ateke

机构信息

Department of Biomedical Engineering, Imam Reza International University, Mashhad 91388-3186, Iran.

Health Technology Research Center, Imam Reza International University, Mashhad 91388-3186, Iran.

出版信息

Brain Sci. 2025 Jan 14;15(1):68. doi: 10.3390/brainsci15010068.

Abstract

BACKGROUND/OBJECTIVES: The classification of psychological disorders has gained significant importance due to recent advancements in signal processing techniques. Traditionally, research in this domain has focused primarily on binary classifications of disorders. This study aims to classify five distinct states, including one control group and four categories of psychological disorders.

METHODS

Our investigation will utilize algorithms based on Granger causality and local graph structures to improve classification accuracy. Feature extraction from connectivity matrices was performed using local structure graphs. The extracted features were subsequently classified employing K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost, and Naïve Bayes classifiers.

RESULTS

The KNN classifier demonstrated the highest accuracy in the gamma band for the depression category, achieving an accuracy of 89.36%, a sensitivity of 89.57%, an F1 score of 94.30%, and a precision of 99.90%. Furthermore, the SVM classifier surpassed the other machine learning algorithms when all features were integrated, attaining an accuracy of 89.06%, a sensitivity of 88.97%, an F1 score of 94.16%, and a precision of 100% for the discrimination of depression in the gamma band.

CONCLUSIONS

The proposed methodology provides a novel approach for analyzing EEG signals and holds potential applications in the classification of psychological disorders.

摘要

背景/目的:由于信号处理技术的最新进展,心理障碍的分类变得极为重要。传统上,该领域的研究主要集中在障碍的二元分类上。本研究旨在对五种不同状态进行分类,包括一个对照组和四类心理障碍。

方法

我们的调查将利用基于格兰杰因果关系和局部图结构的算法来提高分类准确率。使用局部结构图从连接矩阵中提取特征。随后,使用K近邻(KNN)、支持向量机(SVM)、AdaBoost和朴素贝叶斯分类器对提取的特征进行分类。

结果

KNN分类器在抑郁类别中γ波段表现出最高准确率,准确率为89.36%,灵敏度为89.57%,F1分数为94.30%,精确率为99.90%。此外,当整合所有特征时,SVM分类器在γ波段区分抑郁方面超过了其他机器学习算法,准确率为89.06%,灵敏度为88.97%,F1分数为94.16%,精确率为100%。

结论

所提出的方法为分析脑电图信号提供了一种新方法,并在心理障碍分类中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a24/11763933/fa09f9f70b1d/brainsci-15-00068-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验