Suppr超能文献

利用辅助信息的总体改进指数型方差估计量

Improved exponential type variance estimators for population utilizing supplementary information.

作者信息

Hussain Mujeeb, Zaman Qamruz, Ahmad Hijaz, Albalawi Olayan, Iftikhar Soofia

机构信息

Department of Statistics, University of Peshawar, Pakistan.

Near East University, Operational Research Center in Healthcare, TRNC Mersin 10, Nicosia, 99138, Turkey.

出版信息

Heliyon. 2024 May 18;10(10):e31529. doi: 10.1016/j.heliyon.2024.e31529. eCollection 2024 May 30.

Abstract

This paper contributes to the existing literature on variance estimators by utilizing supplementary information. The variance estimation problem of a finite population is a significant matter as sometimes, it is tough to control the variation. For this purpose, an optimum family of exponential variance estimators is suggested under simple random sampling. Moreover, different specific members of the proposed estimators are identified by incorporating various known characteristics of the supplementary variable in the suggested generalized class of estimators. The derivations for the expressions of bias as well as mean square error (MSE) of the proposed estimators are conducted. The suggested family of estimators is studied in different situations by using sets of real data and simulation studies for their performance. To evaluate the efficiency of the suggested estimators, R software is used for the analysis. The study compares the performance of the proposed estimators against the traditional estimators. The theoretical and numerical comparisons show that the estimators suggested in the study are superior in efficiency as compared to the existing estimators.

摘要

本文通过利用补充信息,为现有关于方差估计量的文献做出了贡献。有限总体的方差估计问题是一个重要问题,因为有时很难控制变异。为此,在简单随机抽样下提出了一个最优的指数方差估计量族。此外,通过在建议的广义估计量类中纳入补充变量的各种已知特征,确定了所提出估计量的不同特定成员。对所提出估计量的偏差和均方误差(MSE)表达式进行了推导。通过使用实际数据集和模拟研究来考察所提出估计量族在不同情况下的性能。为了评估所提出估计量的效率,使用R软件进行分析。该研究将所提出估计量的性能与传统估计量进行了比较。理论和数值比较表明,该研究中提出的估计量在效率上优于现有估计量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b588/11141362/40a080c01b59/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验