Lagarias J C, Mercurio F M
J Biol Chem. 1985 Feb 25;260(4):2415-23.
Light-mediated conformational changes in highly purified 124-kDa phytochrome preparations from etiolated oat seedlings have been identified by steric exclusion high performance liquid chromatography and limited proteolytic studies. Steric exclusion high performance liquid chromatography studies of oat and rye phytochromes show photoreversible changes in retention times, with the red absorbing form of phytochrome (Pr form) eluting later than the far red absorbing form of phytochrome produced by saturating red light illumination of Pr (Pfr form) in a variety of different mobile phase buffers. Molecular mass calibration with globular protein standards in Tris-glycol buffers provides estimates of 318-349 and 363-366 kDa for the molecular sizes of the Pr and Pfr forms, respectively. These analyses support earlier studies that phytochrome is a nonglobular homodimer of 124-kDa subunits in vitro. Limited proteolytic dissection of phytochrome in nondenaturing buffers with seven different endoproteases provides evidence for two "operational" domains within the 124-kDa subunit with molecular mass values of 69-72 and 52-55 kDa. The larger 69-72-kDa domain contains the site for the chromophore attachment as shown by gel electrophoresis derived enzyme-linked immunosorbent assay utilizing site-directed rabbit antiserum to a synthetic undecapeptide which is homologous with the chromophore binding site on oat phytochrome. This chromophore domain exhibits a compact structure, resistant to further proteolysis except near its N terminus. By contrast, the 52-55-kDa nonchromophore domain contains multiple sites for further proteolytic cleavage as revealed by rapid cleavage to smaller polypeptide fragments. Detailed kinetic analyses of the limited proteolytic cleavage of phytochrome with four endoproteases, subtilisin BPN', thermolysin, trypsin, and clostripain, has mapped specific regions within the 124-kDa subunit that participate in light-induced conformational changes. These include a 4-10-kDa region near the N terminus of the chromophore binding domain and at least two regions within the nonchromophore domain. A comprehensive peptide map of the oat phytochrome subunit is presented, which incorporates the results of these proteolytic studies with the recent, yet unpublished sequence analyses of Avena phytochrome cDNA clones which show the N-terminal localization of the chromophore binding site (Hershey, H. P., Colbert, J. T., Lissemore, J. L., Barker, R. F., and Quail, P. H. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 2332-2336).
通过空间排阻高效液相色谱法和有限蛋白酶解研究,已鉴定出黄化燕麦幼苗中高度纯化的124 kDa光敏色素制剂中的光介导构象变化。燕麦和黑麦光敏色素的空间排阻高效液相色谱研究表明,保留时间存在光可逆变化,在各种不同的流动相缓冲液中,光敏色素的红光吸收形式(Pr形式)比通过Pr的饱和红光照射产生的远红光吸收形式(Pfr形式)洗脱得晚。在Tris - 二醇缓冲液中用球状蛋白质标准品进行分子量校准,分别得出Pr和Pfr形式的分子大小估计值为318 - 349 kDa和363 - 366 kDa。这些分析支持了早期的研究,即光敏色素在体外是由124 kDa亚基组成的非球状同型二聚体。在非变性缓冲液中用七种不同的内切蛋白酶对光敏色素进行有限蛋白酶解,为124 kDa亚基内的两个“功能”结构域提供了证据,其分子量值分别为69 - 72 kDa和52 - 55 kDa。利用针对与燕麦光敏色素发色团结合位点同源的合成十一肽的定点兔抗血清进行凝胶电泳衍生的酶联免疫吸附测定,结果表明较大的69 - 72 kDa结构域包含发色团附着位点。该发色团结构域呈现紧凑结构,除了靠近其N端外,对进一步的蛋白酶解具有抗性。相比之下,52 - 55 kDa的非发色团结构域包含多个可被进一步蛋白酶解切割的位点,这可通过快速切割成较小的多肽片段来揭示。用四种内切蛋白酶(枯草杆菌蛋白酶BPN'、嗜热菌蛋白酶、胰蛋白酶和梭菌蛋白酶)对光敏色素有限蛋白酶解进行的详细动力学分析,已绘制出124 kDa亚基内参与光诱导构象变化的特定区域。这些区域包括发色团结合结构域N端附近的4 - 10 kDa区域以及非发色团结构域内的至少两个区域。本文给出了燕麦光敏色素亚基的综合肽图,该图将这些蛋白酶解研究的结果与尚未发表的燕麦光敏色素cDNA克隆的序列分析结果相结合,后者显示了发色团结合位点的N端定位(Hershey, H. P., Colbert, J. T., Lissemore, J. L., Barker, R. F., and Quail, P. H. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 2332 - 2336)。