Jang Dongsuk, Park Hyeryun, Son Jiye, Hwang Hyeonuk, Kim Su-Jin, Choi Jinwook
Interdisciplinary Program, Bioengineering Major, Seoul National University.
Integrated Major in Innovative Medical Science, Seoul National University.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:249-257. eCollection 2024.
In the rapidly evolving field of healthcare, the integration of artificial intelligence (AI) has become a pivotal component in the automation of clinical workflows, ushering in a new era of efficiency and accuracy. This study focuses on the transformative capabilities of the fine-tuned KoELECTRA model in comparison to the GPT-4 model, aiming to facilitate automated information extraction from thyroid operation narratives. The current research landscape is dominated by traditional methods heavily reliant on regular expressions, which often face challenges in processing free-style text formats containing critical details of operation records, including frozen biopsy reports. Addressing this, the study leverages advanced natural language processing (NLP) techniques to foster a paradigm shift towards more sophisticated data processing systems. Through this comparative study, we aspire to unveil a more streamlined, precise, and efficient approach to document processing in the healthcare domain, potentially revolutionizing the way medical data is handled and analyzed.
在快速发展的医疗保健领域,人工智能(AI)的集成已成为临床工作流程自动化的关键组成部分,开启了一个效率和准确性的新时代。本研究聚焦于微调后的KoELECTRA模型与GPT-4模型相比的变革能力,旨在促进从甲状腺手术记录中自动提取信息。当前的研究领域主要由严重依赖正则表达式的传统方法主导,这些方法在处理包含手术记录关键细节(包括冰冻活检报告)的自由格式文本时常常面临挑战。为解决这一问题,该研究利用先进的自然语言处理(NLP)技术推动向更复杂的数据处理系统的范式转变。通过这项比较研究,我们希望揭示一种在医疗保健领域更简化、精确和高效的文档处理方法,可能会彻底改变医疗数据的处理和分析方式。