Suppr超能文献

将自由文本临床问题自动转换为SNOMED CT表达式

Automating the Transformation of Free-Text Clinical Problems into SNOMED CT Expressions.

作者信息

Peterson Kevin J, Liu Hongfang

机构信息

Division of Information Management and Analytics, Mayo Clinic, Rochester, MN.

Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:497-506. eCollection 2020.

Abstract

An important function of the patient record is to effectively and concisely communicate patient problems. In many cases, these problems are represented as short textual summarizations and appear in various sections of the record including problem lists, diagnoses, and chief complaints. While free-text problem descriptions effectively capture the clinicians' intent, these unstructured representations are problematic for downstream analytics. We present an automated approach to converting free-text problem descriptions into structured Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) expressions. Our methods focus on incorporating new advances in deep learning to build formal semantic representations of summary level clinical problems from text. We evaluate our methods against current approaches as well as against a large clinical corpus. We find that our methods outperform current techniques on the important relation identification sub-task of this conversion, and highlight the challenges of applying these methods to real-world clinical text.

摘要

患者记录的一项重要功能是有效且简洁地传达患者问题。在许多情况下,这些问题以简短的文本摘要形式呈现,并出现在记录的各个部分,包括问题列表、诊断结果和主要症状。虽然自由文本问题描述有效地捕捉了临床医生的意图,但这些非结构化表示对于下游分析来说存在问题。我们提出了一种自动方法,将自由文本问题描述转换为结构化的医学系统命名法 - 临床术语(SNOMED CT)表达式。我们的方法专注于融入深度学习的新进展,以从文本中构建总结级临床问题的形式语义表示。我们将我们的方法与当前方法以及一个大型临床语料库进行评估。我们发现,在这种转换的重要关系识别子任务上,我们的方法优于当前技术,并突出了将这些方法应用于实际临床文本的挑战。

相似文献

4
Towards Converting Clinical Phrases into SNOMED CT Expressions.迈向将临床短语转换为SNOMED CT表达式
Biomed Inform Insights. 2013 Jun 24;6(Suppl 1):29-37. doi: 10.4137/BII.S11645. Print 2013.
7
Automatic full conversion of clinical terms into SNOMED CT concepts.临床术语的自动全转换为 SNOMED CT 概念。
J Biomed Inform. 2020 Nov;111:103585. doi: 10.1016/j.jbi.2020.103585. Epub 2020 Oct 2.
10
Using SNOMED CT to represent two interface terminologies.使用SNOMED CT来表示两种接口术语。
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):81-8. doi: 10.1197/jamia.M2694. Epub 2008 Oct 24.

本文引用的文献

7
Structural Patterns under X-Rays: Is SNOMED CT Growing Straight?X射线之下的结构模式:SNOMED CT是否在稳步发展?
PLoS One. 2016 Nov 3;11(11):e0165619. doi: 10.1371/journal.pone.0165619. eCollection 2016.
8
Big data analytics in healthcare: promise and potential.医疗保健中的大数据分析:前景与潜力。
Health Inf Sci Syst. 2014 Feb 7;2:3. doi: 10.1186/2047-2501-2-3. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验