Bhagat Navya, Mackey Olivia, Wilcox Adam
Institute for Informatics, Data Science and Biostatistics, Washington University in St. Louis, St. Louis, MO.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:509-514. eCollection 2024.
Extracting valuable insights from unstructured clinical narrative reports is a challenging yet crucial task in the healthcare domain as it allows healthcare workers to treat patients more efficiently and improves the overall standard of care. We employ ChatGPT, a Large language model (LLM), and compare its performance to manual reviewers. The review focuses on four key conditions: family history of heart disease, depression, heavy smoking, and cancer. The evaluation of a diverse sample of History and Physical (H&P) Notes, demonstrates ChatGPT's remarkable capabilities. Notably, it exhibits exemplary results in sensitivity for depression and heavy smokers and specificity for cancer. We identify areas for improvement as well, particularly in capturing nuanced semantic information related to family history of heart disease and cancer. With further investigation, ChatGPT holds substantial potential for advancements in medical information extraction.
从非结构化临床叙述报告中提取有价值的见解,在医疗领域是一项具有挑战性但至关重要的任务,因为它能让医护人员更高效地治疗患者,并提高整体护理标准。我们使用大型语言模型ChatGPT,并将其性能与人工审核员进行比较。此次审核聚焦于四个关键病症:心脏病家族史、抑郁症、重度吸烟和癌症。对各种病史和体格检查(H&P)记录样本的评估,展示了ChatGPT的卓越能力。值得注意的是,它在抑郁症和重度吸烟者的敏感度以及癌症的特异性方面表现出了典范性的结果。我们也确定了需要改进的领域,特别是在捕捉与心脏病家族史和癌症相关的细微语义信息方面。通过进一步研究,ChatGPT在医学信息提取方面有着巨大的进步潜力。