Suppr超能文献

用于高效医学信息提取的大语言模型

Large Language Models for Efficient Medical Information Extraction.

作者信息

Bhagat Navya, Mackey Olivia, Wilcox Adam

机构信息

Institute for Informatics, Data Science and Biostatistics, Washington University in St. Louis, St. Louis, MO.

出版信息

AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:509-514. eCollection 2024.

Abstract

Extracting valuable insights from unstructured clinical narrative reports is a challenging yet crucial task in the healthcare domain as it allows healthcare workers to treat patients more efficiently and improves the overall standard of care. We employ ChatGPT, a Large language model (LLM), and compare its performance to manual reviewers. The review focuses on four key conditions: family history of heart disease, depression, heavy smoking, and cancer. The evaluation of a diverse sample of History and Physical (H&P) Notes, demonstrates ChatGPT's remarkable capabilities. Notably, it exhibits exemplary results in sensitivity for depression and heavy smokers and specificity for cancer. We identify areas for improvement as well, particularly in capturing nuanced semantic information related to family history of heart disease and cancer. With further investigation, ChatGPT holds substantial potential for advancements in medical information extraction.

摘要

从非结构化临床叙述报告中提取有价值的见解,在医疗领域是一项具有挑战性但至关重要的任务,因为它能让医护人员更高效地治疗患者,并提高整体护理标准。我们使用大型语言模型ChatGPT,并将其性能与人工审核员进行比较。此次审核聚焦于四个关键病症:心脏病家族史、抑郁症、重度吸烟和癌症。对各种病史和体格检查(H&P)记录样本的评估,展示了ChatGPT的卓越能力。值得注意的是,它在抑郁症和重度吸烟者的敏感度以及癌症的特异性方面表现出了典范性的结果。我们也确定了需要改进的领域,特别是在捕捉与心脏病家族史和癌症相关的细微语义信息方面。通过进一步研究,ChatGPT在医学信息提取方面有着巨大的进步潜力。

相似文献

1
Large Language Models for Efficient Medical Information Extraction.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:509-514. eCollection 2024.
2
A critical assessment of using ChatGPT for extracting structured data from clinical notes.
NPJ Digit Med. 2024 May 1;7(1):106. doi: 10.1038/s41746-024-01079-8.
4
ChatGPT's performance in German OB/GYN exams - paving the way for AI-enhanced medical education and clinical practice.
Front Med (Lausanne). 2023 Dec 13;10:1296615. doi: 10.3389/fmed.2023.1296615. eCollection 2023.
6
Evaluating Large Language Models in Extracting Cognitive Exam Dates and Scores.
medRxiv. 2024 Feb 13:2023.07.10.23292373. doi: 10.1101/2023.07.10.23292373.
8
FROM TEXT TO DIAGNOSE: CHATGPT'S EFFICACY IN MEDICAL DECISION-MAKING.
Wiad Lek. 2023;76(11):2345-2350. doi: 10.36740/WLek202311101.
9
The Potential Applications and Challenges of ChatGPT in the Medical Field.
Int J Gen Med. 2024 Mar 5;17:817-826. doi: 10.2147/IJGM.S456659. eCollection 2024.
10
How does ChatGPT-4 preform on non-English national medical licensing examination? An evaluation in Chinese language.
PLOS Digit Health. 2023 Dec 1;2(12):e0000397. doi: 10.1371/journal.pdig.0000397. eCollection 2023 Dec.

引用本文的文献

1
Leveraging GPT-4o for Automated Extraction of Neural Projections from Scientific Literature.
AMIA Jt Summits Transl Sci Proc. 2025 Jun 10;2025:32-41. eCollection 2025.
2
Clinical insights: A comprehensive review of language models in medicine.
PLOS Digit Health. 2025 May 8;4(5):e0000800. doi: 10.1371/journal.pdig.0000800. eCollection 2025 May.

本文引用的文献

1
GPT-4 passes the bar exam.
Philos Trans A Math Phys Eng Sci. 2024 Apr 15;382(2270):20230254. doi: 10.1098/rsta.2023.0254. Epub 2024 Feb 26.
2
Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models.
PLOS Digit Health. 2023 Feb 9;2(2):e0000198. doi: 10.1371/journal.pdig.0000198. eCollection 2023 Feb.
3
Towards automatic text-based estimation of depression through symptom prediction.
Brain Inform. 2023 Feb 13;10(1):4. doi: 10.1186/s40708-023-00185-9.
5
Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
Comput Struct Biotechnol J. 2021;19:2833-2850. doi: 10.1016/j.csbj.2021.05.010. Epub 2021 May 7.
6
Automated extraction of sudden cardiac death risk factors in hypertrophic cardiomyopathy patients by natural language processing.
Int J Med Inform. 2019 Aug;128:32-38. doi: 10.1016/j.ijmedinf.2019.05.008. Epub 2019 May 13.
8
Comparison of Three Information Sources for Smoking Information in Electronic Health Records.
Cancer Inform. 2016 Dec 8;15:237-242. doi: 10.4137/CIN.S40604. eCollection 2016.
9
Extracting information from the text of electronic medical records to improve case detection: a systematic review.
J Am Med Inform Assoc. 2016 Sep;23(5):1007-15. doi: 10.1093/jamia/ocv180. Epub 2016 Feb 5.
10
Advances in natural language processing.
Science. 2015 Jul 17;349(6245):261-6. doi: 10.1126/science.aaa8685.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验